Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/72698
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Falcón Santana, Sergio | en_US |
dc.contributor.author | Díaz-Barrero, José Luis | en_US |
dc.date.accessioned | 2020-05-20T18:39:52Z | - |
dc.date.available | 2020-05-20T18:39:52Z | - |
dc.date.issued | 2006 | en_US |
dc.identifier.issn | 0899-6180 | en_US |
dc.identifier.other | Scopus | - |
dc.identifier.uri | http://hdl.handle.net/10553/72698 | - |
dc.description.abstract | In this note we prove that for all positive integers n, the sum S 4n+1 of the first 4n + 1 Pell numbers is a perfect square. As a consequence, an identity involving binomial coefficients and Pell numbers is given. Also, sums of an even and odd number of terms of odd order are evaluated and some divisibility properties are obtained. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Missouri Journal of Mathematical Sciences | en_US |
dc.source | Missouri Journal of Mathematical Sciences [ISSN 0899-6180], v. 18 (1), p. 33-40 (Diciembre 2006) | en_US |
dc.subject | 1205 Teoría de números | en_US |
dc.title | Some properties of sums involving pell numbers | en_US |
dc.type | info:eu-repo/semantics/Article | en_US |
dc.type | Article | en_US |
dc.identifier.scopus | 33750555075 | - |
dc.contributor.authorscopusid | 15051052200 | - |
dc.contributor.authorscopusid | 6602720000 | - |
dc.identifier.eissn | 1085-2581 | - |
dc.description.lastpage | 40 | en_US |
dc.identifier.issue | 1 | - |
dc.description.firstpage | 33 | en_US |
dc.relation.volume | 18 | en_US |
dc.investigacion | Ciencias | en_US |
dc.type2 | Artículo | en_US |
dc.description.numberofpages | 8 | en_US |
dc.utils.revision | Sí | en_US |
dc.date.coverdate | Diciembre 2006 | en_US |
dc.identifier.ulpgc | Sí | es |
dc.description.esci | ESCI | |
item.grantfulltext | open | - |
item.fulltext | Con texto completo | - |
crisitem.author.orcid | 0000-0001-9917-3101 | - |
crisitem.author.fullName | Falcón Santana, Sergio | - |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
13
checked on Nov 17, 2024
Page view(s)
54
checked on Dec 2, 2023
Download(s)
61
checked on Dec 2, 2023
Google ScholarTM
Check
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.