Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/72553
Title: Cohen-Macaulay modules of infinite projective dimension
Authors: Marcelo Vega, Agustín
Rodríguez Mielgo, César 
Masque, Jaime Munoz
UNESCO Clasification: 1201 Algebra
120101 Geometría algebraica
Keywords: Cohen-Macaulay module
Depth of a module
Minimal free resolution
Projective dimension
Issue Date: 2008
Journal: Communications in Algebra 
Abstract: A characterization of finitely generated torsion modules of not necessarily finite projective dimension over a Cohen-Macaulay ring, is given in terms of the non-Cohen-Macaulay loci and the Fitting invariants of a free resolution of such a module.
URI: http://hdl.handle.net/10553/72553
ISSN: 0092-7872
DOI: 10.1080/00927870801949484
Source: Communications In Algebra [ISSN 0092-7872], v. 36 (6), p. 2072-2078, (Junio 2008)
Appears in Collections:Artículos
Show full item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.