Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/72452
DC FieldValueLanguage
dc.contributor.authorAlmeida Rodríguez, Ángel Joséen_US
dc.contributor.authorLópez Brito, María Belénen_US
dc.date.accessioned2020-05-14T22:26:09Z-
dc.date.available2020-05-14T22:26:09Z-
dc.date.issued2011en_US
dc.identifier.isbn978-84-614-7423-3en_US
dc.identifier.issn2340-1079en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/72452-
dc.description.abstractMany students have a hard time with Multivariable Calculus because of its abstract theoretical foundations and, at the same time, geometrical skills involved. In recent years things have become even worse: new study plans have been designed for Engineering careers in which less time is available for mathematics. Some topics taught in second year calculus in old plans are now exposed in the first semester. In this way the student have very little time to mature the new knowledge.In the other hand in many textbooks advanced mathematical concepts are exposed in a too abstract way that does not help students to understand the topic.Fortunately many mathematical topics have been rethought and exposed in new ways more suitable for students needs. Moreover now we can use for free computer software to make calculations and to draw geometrical representations unimaginable not long ago.We present here a geometric intuitive approach to the constrained optimization problem in a multivariable calculus course for engineering students. Open source software like Maxima and Asymptote is used for this purpose. The basic ideas of this presentation follow.- Rouche-Frobenius theorem shows how an undetermined linear equations system is equivalent to a parameterized linear variety.- Implicit Function theorem shows how an undetermined nonlinear equations system is equivalent to a set of parameterized non linear varieties.- Constrained optimization problem is equivalent to an unconstrained one if a parameterization of the constraint is available.- If such a parameterization is not available, the Implicit Function theorem provides a necessary condition known as Lagrange's Multipliers Method.- All the situations are very geometrical in nature and plotting software like Maxima and Asymptote let us to see what is around in the low dimensional cases.en_US
dc.languageengen_US
dc.relation.ispartofINTED proceedingsen_US
dc.sourceInted2011: 5Th International Technology, Education And Development Conference, p. 5875-5880, (2011)en_US
dc.subject12 Matemáticasen_US
dc.subject120310 Enseñanza con ayuda de ordenadoren_US
dc.subject.otherInnovationen_US
dc.subject.otherEngineering Educationen_US
dc.subject.otherMathematicsen_US
dc.subject.otherIcten_US
dc.titleLagrange multiplier's with open source softwareen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference5th International Technology, Education and Development Conference (INTED)en_US
dc.identifier.isi000326447705123-
dc.description.lastpage5880en_US
dc.description.firstpage5875en_US
dc.investigacionCienciasen_US
dc.type2Actas de congresosen_US
dc.contributor.daisngid10171110-
dc.contributor.daisngid12359990-
dc.description.numberofpages6en_US
dc.identifier.eisbn978-84-614-7423-3-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Rodriguez, AJA-
dc.contributor.wosstandardWOS:Brito, MBL-
dc.date.coverdate2011en_US
dc.identifier.conferenceidevents120848-
dc.identifier.ulpgces
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.deptGIR Análisis funcional y ecuaciones integrales-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0001-5803-3970-
crisitem.author.orcid0000-0002-1484-0890-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.fullNameAlmeida Rodríguez, Ángel José-
crisitem.author.fullNameLópez Brito, María Belén-
crisitem.event.eventsstartdate07-03-2011-
crisitem.event.eventsenddate09-03-2011-
Appears in Collections:Actas de congresos
Show simple item record

Page view(s)

102
checked on Sep 28, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.