Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/72384
Título: Multi-channel EEG signal segmentation and feature extraction
Autores/as: Procházka, Aleš
Mudrová, Martina
Vyšata, Oldřich
Háva, Robert
Araujo, Carmen Paz Suarez 
Clasificación UNESCO: 120304 Inteligencia artificial
Fecha de publicación: 2010
Proyectos: Diseño y Evaluación de Herramientas Computacionales Inteligentes de Ayuda Al Diagnostico y Pronostico Del Deterioro Cognitivo, Enfermedad de Alzheimer y Otras Demencias. Implantación en Telemedicina. 
Publicación seriada: Proceedings - IEEE International Conference on Intelligent Engineering Systems 
Conferencia: 14th International Conference on Intelligent Engineering Systems, INES 2010 
Resumen: Signal analysis of multi-channel data form a specific area of general digital signal processing methods. The paper is devoted to application of these methods for electroencephalogram (EEG) signal processing including signal de-noising, evaluation of its principal components and segmentation based upon feature detection both by the discrete wavelet transform (DWT) and discrete Fourier transform (DFT). The self-organizing neural networks are then used for pattern vectors classification using a specific statistical criterion proposed to evaluate distances of individual feature vector values from corresponding cluster centers. Results achieved are compared for different data sets and selected mathematical methods to detect and to classify signal segments features. Proposed methods are accompanied by the appropriate graphical user interface (GUI) designed in the MATLAB environment.
URI: http://hdl.handle.net/10553/72384
ISBN: 978-1-4244-7650-3
ISSN: 1543-9259
DOI: 10.1109/INES.2010.5483824
Fuente: INES 2010 - 14th International Conference on Intelligent Engineering Systems, Proceedings, p. 317-320, (Julio 2010)
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

20
actualizado el 24-nov-2024

Visitas

57
actualizado el 16-dic-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.