Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/72384
Campo DC Valoridioma
dc.contributor.authorProcházka, Alešen_US
dc.contributor.authorMudrová, Martinaen_US
dc.contributor.authorVyšata, Oldřichen_US
dc.contributor.authorHáva, Roberten_US
dc.contributor.authorAraujo, Carmen Paz Suarezen_US
dc.date.accessioned2020-05-13T17:16:50Z-
dc.date.available2020-05-13T17:16:50Z-
dc.date.issued2010en_US
dc.identifier.isbn978-1-4244-7650-3en_US
dc.identifier.issn1543-9259en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/72384-
dc.description.abstractSignal analysis of multi-channel data form a specific area of general digital signal processing methods. The paper is devoted to application of these methods for electroencephalogram (EEG) signal processing including signal de-noising, evaluation of its principal components and segmentation based upon feature detection both by the discrete wavelet transform (DWT) and discrete Fourier transform (DFT). The self-organizing neural networks are then used for pattern vectors classification using a specific statistical criterion proposed to evaluate distances of individual feature vector values from corresponding cluster centers. Results achieved are compared for different data sets and selected mathematical methods to detect and to classify signal segments features. Proposed methods are accompanied by the appropriate graphical user interface (GUI) designed in the MATLAB environment.en_US
dc.languageengen_US
dc.relationDiseño y Evaluación de Herramientas Computacionales Inteligentes de Ayuda Al Diagnostico y Pronostico Del Deterioro Cognitivo, Enfermedad de Alzheimer y Otras Demencias. Implantación en Telemedicina.en_US
dc.relation.ispartofProceedings - IEEE International Conference on Intelligent Engineering Systemsen_US
dc.sourceINES 2010 - 14th International Conference on Intelligent Engineering Systems, Proceedings, p. 317-320, (Julio 2010)en_US
dc.subject120304 Inteligencia artificialen_US
dc.titleMulti-channel EEG signal segmentation and feature extractionen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference14th International Conference on Intelligent Engineering Systems, INES 2010en_US
dc.identifier.doi10.1109/INES.2010.5483824en_US
dc.identifier.scopus77954792165-
dc.contributor.authorscopusid7005747805-
dc.contributor.authorscopusid6505882567-
dc.contributor.authorscopusid6602874156-
dc.contributor.authorscopusid36179904100-
dc.contributor.authorscopusid23476354000-
dc.description.lastpage320en_US
dc.description.firstpage317en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.identifier.eisbn978-1-4244-7652-7-
dc.utils.revisionen_US
dc.date.coverdateJulio 2010en_US
dc.identifier.conferenceidevents121382-
dc.identifier.ulpgces
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.project.principalinvestigatorSuárez Araujo, Carmen Paz-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0002-8826-0899-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNameSuárez Araujo, Carmen Paz-
crisitem.event.eventsstartdate05-05-2010-
crisitem.event.eventsenddate07-05-2010-
Colección:Actas de congresos
Vista resumida

Citas SCOPUSTM   

20
actualizado el 24-nov-2024

Visitas

57
actualizado el 16-dic-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.