Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/72378
Título: | On uncertainty and robustness in evolutionary optimization-based MCDM | Autores/as: | Salazar Aponte, Daniel E. Rocco S, Claudio M. Galván, Blas |
Clasificación UNESCO: | 120304 Inteligencia artificial | Palabras clave: | Multiobjective Optimization Mean-Value Variance |
Fecha de publicación: | 2010 | Publicación seriada: | Lecture Notes in Computer Science | Conferencia: | 5th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2009 | Resumen: | In this article we present a methodological framework entitled 'Analysis of Uncertainty and Robustness in Evolutionary Optimization' or AUREO for short. This methodology was developed as a diagnosis tool to analyze the characteristics of the decision-making problems to be solved with Multi-Objective Evolutionary Algorithms (MOEA) in order to: 1) determine the mathematical program that represents best the current problem in terms of the available information, and 2) to help the design or adaptation of the MOEA meant to solve the mathematical program. Regarding the first point, the different versions of decision-making problems in the presence of uncertainty are reduced to a few classes, while for the second point possible configurations of MOEA are suggested in terms of the type of uncertainty and the theory used to represent it. Finally, the AUREO has been introduced and tested successfully in different applications in [1]. | URI: | http://hdl.handle.net/10553/72378 | ISBN: | 978-3-642-01019-4 | ISSN: | 0302-9743 | DOI: | 10.1007/978-3-642-01020-0_9 | Fuente: | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) [ISSN 0302-9743], v. 5467 LNCS, p. 51-65, (Diciembre 2010) |
Colección: | Actas de congresos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.