Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/72378
Título: On uncertainty and robustness in evolutionary optimization-based MCDM
Autores/as: Salazar Aponte, Daniel E.
Rocco S, Claudio M.
Galván, Blas 
Clasificación UNESCO: 120304 Inteligencia artificial
Palabras clave: Multiobjective Optimization
Mean-Value
Variance
Fecha de publicación: 2010
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 5th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2009 
Resumen: In this article we present a methodological framework entitled 'Analysis of Uncertainty and Robustness in Evolutionary Optimization' or AUREO for short. This methodology was developed as a diagnosis tool to analyze the characteristics of the decision-making problems to be solved with Multi-Objective Evolutionary Algorithms (MOEA) in order to: 1) determine the mathematical program that represents best the current problem in terms of the available information, and 2) to help the design or adaptation of the MOEA meant to solve the mathematical program. Regarding the first point, the different versions of decision-making problems in the presence of uncertainty are reduced to a few classes, while for the second point possible configurations of MOEA are suggested in terms of the type of uncertainty and the theory used to represent it. Finally, the AUREO has been introduced and tested successfully in different applications in [1].
URI: http://hdl.handle.net/10553/72378
ISBN: 978-3-642-01019-4
ISSN: 0302-9743
DOI: 10.1007/978-3-642-01020-0_9
Fuente: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) [ISSN 0302-9743], v. 5467 LNCS, p. 51-65, (Diciembre 2010)
Colección:Actas de congresos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.