Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/72307
DC FieldValueLanguage
dc.contributor.authorAlmeida, Franciscoen_US
dc.contributor.authorGiménez, Domingoen_US
dc.contributor.authorLópez-Espín, Jose Juanen_US
dc.contributor.authorPérez Pérez, Melquíadesen_US
dc.date.accessioned2020-05-12T17:38:52Z-
dc.date.available2020-05-12T17:38:52Z-
dc.date.issued2013en_US
dc.identifier.issn2168-2216en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/72307-
dc.description.abstractSome optimization problems can be tackled only with metaheuristic methods, and to obtain a satisfactory metaheuristic, it is necessary to develop and experiment with various methods and to tune them for each particular problem. The use of a unified scheme for metaheuristics facilitates the development of metaheuristics by reutilizing the basic functions. In our proposal, the unified scheme is improved by adding transitional parameters. Those parameters are included in each of the functions, in such a way that different values of the parameters provide different metaheuristics or combinations of metaheuristics. Thus, the unified parameterized scheme eases the development of metaheuristics and their application. In this paper, we expose the basic ideas of the parameterization of metaheuristics. This methodology is tested with the application of local and global search methods (greedy randomized adaptive search procedure [GRASP], genetic algorithms, and scatter search), and their combinations, to three scientific problems: obtaining satisfactory simultaneous equation models from a set of values of the variables, a task-to-processor assignment problem with independent tasks and memory constrains, and the p-hub median location-allocation problem.en_US
dc.languageengen_US
dc.relation.ispartofIEEE Transactions on Systems, Man, and Cybernetics: Systemsen_US
dc.sourceIEEE Transactions on Systems, Man, and Cybernetics [2168-2216], v. 43 (3), p. 570-586, (May 2013)en_US
dc.subject120601 Construcción de algoritmosen_US
dc.subject120304 Inteligencia artificialen_US
dc.subject1207 Investigación operativaen_US
dc.subject.otherGenetic algorithms (Gas)en_US
dc.subject.otherGreedy randomized adaptive search procedure (Grasp)en_US
dc.subject.otherParameterized metaheuristicsen_US
dc.subject.otherScatter search (Ss)en_US
dc.subject.otherUnified metaheuristicsen_US
dc.titleParameterized schemes of metaheuristics: basic ideas and applications with genetic algorithms, scatter search, and GRASPen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TSMCA.2012.2217322en_US
dc.identifier.scopus84887052553-
dc.identifier.isi000323495900008-
dc.contributor.authorscopusid7006537139-
dc.contributor.authorscopusid7005459638-
dc.contributor.authorscopusid24385590800-
dc.contributor.authorscopusid55916373600-
dc.identifier.eissn2168-2232-
dc.description.lastpage586en_US
dc.identifier.issue3-
dc.description.firstpage570en_US
dc.relation.volume43en_US
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.contributor.daisngid229319-
dc.contributor.daisngid468892-
dc.contributor.daisngid1393819-
dc.contributor.daisngid21266634-
dc.description.numberofpages17en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Almeida, F-
dc.contributor.wosstandardWOS:Gimenez, D-
dc.contributor.wosstandardWOS:Lopez-Espin, JJ-
dc.contributor.wosstandardWOS:Perez-Perez, M-
dc.date.coverdateMayo 2013en_US
dc.identifier.ulpgces
dc.description.jcr2,169
dc.description.jcrqQ1
dc.description.scieSCIE
item.fulltextSin texto completo-
item.grantfulltextnone-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

39
checked on Mar 30, 2025

WEB OF SCIENCETM
Citations

33
checked on Mar 30, 2025

Page view(s)

117
checked on Jan 25, 2025

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.