Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/72278
DC FieldValueLanguage
dc.contributor.authorTroncoso, E.en_US
dc.contributor.authorNewborough, M.en_US
dc.date.accessioned2020-05-12T11:44:34Z-
dc.date.available2020-05-12T11:44:34Z-
dc.date.issued2010en_US
dc.identifier.issn0306-2619en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/72278-
dc.description.abstractFor an isolated power system the deployment of a large stock of electrolysers is investigated as a means for increasing the penetrations of wind power plant and zero-carbon thermal power plant. Consideration is given to the sizing and utilization of an electrolyser stock for three electrolyser implementation cases and three operational strategies, installed capacity ranges of 20-100% for wind power and 10-35% for zero-carbon thermal power plant (as proportions of the power system's maximum electrical demand) were investigated. Relative to wind-hydrogen alone, hydrogen yields are substantially increased especially on low-wind days. The average load placed on fossil-fuelled power plant is substantially decreased (while achieving a virtually flat load profile) and the carbon intensity of electricity can be reduced to values of <0.1 kg CO(2)/kWh(e). The trade-offs between the carbon intensity of the electricity delivered, the carbon intensity of the hydrogen produced and the daily hydrogen yield are explored. For example (on the variable wind day for Strategy C with respective wind power and zero-carbon thermal power penetrations of 100% and 35%), if the carbon intensity of hydrogen is relaxed from 0 to 3 kg CO(2)/kg H(2), the hydrogen yield can be increased from 435 tonnes to 1115 tonnes (which is the energy equivalent of 120% of consumer demand for electricity on that day). The findings suggest that the deployment of electrolysers on both the supply and demand-side of the power system can contribute nationally-significant amounts of zero or low-carbon hydrogen without exceeding the power system's current maximum system demand. (C) 2009 Elsevier Ltd. All rights reserved.en_US
dc.languageengen_US
dc.relation.ispartofApplied Energyen_US
dc.sourceApplied Energy [ISSN 0306-2619],v. 87 (1), p. 1-15en_US
dc.subject3322 Tecnología energéticaen_US
dc.subject.otherElectrolysersen_US
dc.subject.otherZero-Carbon Poweren_US
dc.subject.otherLoad Factoren_US
dc.subject.otherWind Curtailmenten_US
dc.titleElectrolysers as a load management mechanism for power systems with wind power and zero-carbon thermal power planten_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.apenergy.2009.04.006en_US
dc.identifier.isi000271037600001-
dc.description.lastpage15en_US
dc.identifier.issue1-
dc.description.firstpage1en_US
dc.relation.volume87en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid30029633-
dc.contributor.daisngid2225301-
dc.description.numberofpages15en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Troncoso, E-
dc.contributor.wosstandardWOS:Newborough, M-
dc.date.coverdateEnero 2010en_US
dc.identifier.ulpgces
dc.description.jcr3,915
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
Appears in Collections:Artículos
Show simple item record

WEB OF SCIENCETM
Citations

24
checked on Dec 15, 2024

Page view(s)

17
checked on Jan 27, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.