Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/72264
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Rodríguez-Rodríguez, J. C. | en_US |
dc.contributor.author | De Blasio , Gabriele Salvatore | en_US |
dc.contributor.author | García, C. R. | en_US |
dc.contributor.author | Quesada-Arencibia, A. | en_US |
dc.date.accessioned | 2020-05-11T19:07:27Z | - |
dc.date.available | 2020-05-11T19:07:27Z | - |
dc.date.issued | 2020 | en_US |
dc.identifier.isbn | 978-3-030-45092-2 | en_US |
dc.identifier.issn | 0302-9743 | en_US |
dc.identifier.other | Scopus | - |
dc.identifier.uri | http://hdl.handle.net/10553/72264 | - |
dc.description.abstract | Promentor is a solution that advises job seekers how to effectively improve their chances of getting a job in a certain area of interest by focusing on what, at least historically, seems to work best. To this end, Promentor first analyzes previous selection processes, trying to quantitatively evaluate the effective value of the characteristics that the candidates put into play in the selection. With this evaluation, Promentor can estimate the value of a profile of the job seeker who requests advice based on the characteristics that make it up. Promentor then makes a simulation by applying each of the suggestions on the job seeker’s profile exhaustively and evaluating the modified profile. In this way, Promentor identifies which suggestions offer the greatest increase in qualification, and are therefore more recommendable. Promentor is a module of the employment web portal GetaJob.es, which has been developed in parallel and equipped with specific capabilities for collecting the data required by Promentor. | en_US |
dc.language | eng | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | Lecture Notes in Computer Science | en_US |
dc.source | Computer Aided Systems Theory – EUROCAST 2019. EUROCAST 2019. Lecture Notes in Computer Science, v. 12013 LNCS, p. 75-82, (Enero 2020) | en_US |
dc.subject | 120312 Bancos de datos | en_US |
dc.subject | 1203 Ciencia de los ordenadores | en_US |
dc.subject.other | Data mining | en_US |
dc.subject.other | Employment portal | en_US |
dc.subject.other | Job search | en_US |
dc.subject.other | Training | en_US |
dc.title | A job-seeking advisor bot based in data mining | en_US |
dc.type | info:eu-repo/semantics/bookPart | en_US |
dc.type | Book part | en_US |
dc.relation.conference | International Conference on Computer Aided Systems Theory (EUROCAST 2019) | en_US |
dc.identifier.doi | 10.1007/978-3-030-45093-9_10 | en_US |
dc.identifier.scopus | 85084010232 | - |
dc.contributor.authorscopusid | 8925188600 | - |
dc.contributor.authorscopusid | 8935044600 | - |
dc.contributor.authorscopusid | 7401486323 | - |
dc.contributor.authorscopusid | 13006053800 | - |
dc.identifier.eissn | 1611-3349 | - |
dc.description.lastpage | 82 | en_US |
dc.description.firstpage | 75 | en_US |
dc.relation.volume | 12013 LNCS | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Capítulo de libro | en_US |
dc.identifier.eisbn | 978-3-030-45093-9 | - |
dc.utils.revision | Sí | en_US |
dc.date.coverdate | Enero 2020 | en_US |
dc.identifier.supplement | 0302-9743 | - |
dc.identifier.ulpgc | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-INF | en_US |
dc.contributor.buulpgc | BU-INF | en_US |
dc.contributor.buulpgc | BU-INF | en_US |
dc.contributor.buulpgc | BU-INF | en_US |
dc.description.sjr | 0,249 | |
dc.description.sjrq | Q3 | |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.event.eventsstartdate | 17-02-2019 | - |
crisitem.event.eventsenddate | 22-02-2019 | - |
crisitem.author.dept | GIR IUCES: Computación inteligente, percepción y big data | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.dept | GIR IUCES: Computación inteligente, percepción y big data | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.dept | GIR IUCES: Computación inteligente, percepción y big data | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.dept | GIR IUCES: Computación inteligente, percepción y big data | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.orcid | 0000-0003-2186-3094 | - |
crisitem.author.orcid | 0000-0002-6233-567X | - |
crisitem.author.orcid | 0000-0003-1433-3730 | - |
crisitem.author.orcid | 0000-0002-8313-5124 | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.fullName | Rodríguez Rodríguez, José Carlos | - |
crisitem.author.fullName | De Blasio, Gabriele Salvatore | - |
crisitem.author.fullName | García Rodríguez, Carmelo Rubén | - |
crisitem.author.fullName | Quesada Arencibia, Francisco Alexis | - |
Appears in Collections: | Capítulo de libro |
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.