Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/72263
Título: | Genetic algorithm applied to real-time short-term wave prediction for wave generator system in the Canary Islands | Autores/as: | Hernández, C. Méndez, M. Aguasca Colomo, Ricardo |
Clasificación UNESCO: | 120304 Inteligencia artificial | Palabras clave: | Forecasting methods Genetic algorithms Wave energy Yule-Walker method |
Fecha de publicación: | 2020 | Editor/a: | Springer | Publicación seriada: | Lecture Notes in Computer Science | Conferencia: | International Conference on Computer Aided Systems Theory (EUROCAST 2019) | Resumen: | In island territories, as is the case of the Canary Islands, renewable energies mean greater energy independence, in these cases wave and wind energy favour this independence, all the more so when the generation of these types of energy is optimised. The increase in wave energy extracted from the waves requires knowledge of the future wave incident on the energy converters. A prediction system is presented using Genetic Algorithm to optimize the parameters that govern an autoregressive model, model necessary for the prediction of the incident wave. The comparison of the Yule-Walker equations with that of the Genetic Algorithm will provide us with a knowledge of the prediction technique that offers the best results, for the sake of its application. All this under the restriction of limited execution times, less than the periods of the waves to be predicted, and a demanding precision through distant prediction horizons, with reduced training datasets. | URI: | http://hdl.handle.net/10553/72263 | ISBN: | 978-3-030-45092-2 | ISSN: | 0302-9743 | DOI: | 10.1007/978-3-030-45093-9_51 | Fuente: | Computer Aided Systems Theory – EUROCAST 2019. EUROCAST 2019. Lecture Notes in Computer Science, v. 12013 LNCS, p. 421-428, (Enero 2020) |
Colección: | Capítulo de libro |
Visitas
229
actualizado el 23-nov-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.