Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/72202
Título: Early detection of change by applying scale-space methodology to hyperspectral images
Autores/as: Uteng, Stig
Johansen, Thomas Haugland
Zaballos, Jose Ignacio
Ortega, Samuel 
Holmström, Lasse
Callicó, Gustavo M. 
Fabelo, Himar A. 
Godtliebsen, Fred
Clasificación UNESCO: 220990 Tratamiento digital. Imágenes
Palabras clave: Change Detection
Hyperspectral Imaging
Scale-Space Methodology
Fecha de publicación: 2020
Publicación seriada: Applied Sciences (Basel) 
Resumen: Given an object of interest that evolves in time, one often wants to detect possible changes in its properties. The first changes may be small and occur in different scales and it may be crucial to detect them as early as possible. Examples include identification of potentially malignant changes in skin moles or the gradual onset of food quality deterioration. Statistical scale-space methodologies can be very useful in such situations since exploring the measurements in multiple resolutions can help identify even subtle changes. We extend a recently proposed scale-space methodology to a technique that successfully detects such small changes and at the same time keeps false alarms at a very low level. The potential of the novel methodology is first demonstrated with hyperspectral skin mole data artificially distorted to include a very small change. Our real data application considers hyperspectral images used for food quality detection. In these experiments the performance of the proposed method is either superior or on par with a standard approach such as principal component analysis.
URI: http://hdl.handle.net/10553/72202
DOI: 10.3390/app10072298
Fuente: Applied Sciences (Switzerland)[EISSN 2076-3417],v. 10 (7), (Abril 2020)
Colección:Artículos
miniatura
Adobe PDF (678,93 kB)
Vista completa

Visitas

112
actualizado el 10-ago-2024

Descargas

86
actualizado el 10-ago-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.