Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/71963
DC FieldValueLanguage
dc.contributor.authorBen Abdallah, Mariemen_US
dc.contributor.authorMalek, Jiheneen_US
dc.contributor.authorAzar, Ahmad Taheren_US
dc.contributor.authorBelmabrouk, Hafedhen_US
dc.contributor.authorEsclarin Monreal, Julioen_US
dc.contributor.authorKrissian , Karlen_US
dc.date.accessioned2020-05-04T18:26:30Z-
dc.date.available2020-05-04T18:26:30Z-
dc.date.issued2016en_US
dc.identifier.issn0941-0643en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/71963-
dc.description.abstractIn image processing and computer vision, the denoising process is an important step before several processing tasks. This paper presents a new adaptive noise-reducing anisotropic diffusion (ANRAD) method to improve the image quality, which can be considered as a modified version of a speckle-reducing anisotropic diffusion (SRAD) filter. The SRAD works very well for monochrome images with speckle noise. However, in the case of images corrupted with other types of noise, it cannot provide optimal image quality due to the inaccurate noise model. The ANRAD method introduces an automatic RGB noise model estimator in a partial differential equation system similar to the SRAD diffusion, which estimates at each iteration an upper bound of the real noise level function by fitting a lower envelope to the standard deviations of pre-segment image variances. Compared to the conventional SRAD filter, the proposed filter has the advantage of being adapted to the color noise produced by today's CCD digital camera. The simulation results show that the ANRAD filter can reduce the noise while preserving image edges and fine details very well. Also, it is favorably compared to the fast non-local means filter, showing an improvement in the quality of the restored image. A quantitative comparison measure is given by the parameters like the mean structural similarity index and the peak signal-to-noise ratio.en_US
dc.languageengen_US
dc.relation.ispartofNeural Computing and Applicationsen_US
dc.sourceNeural Computing & Applications [ISSN 0941-0643], v. 27 (5), p. 1273-1300, (Julio 2016)en_US
dc.subject220990 Tratamiento digital. Imágenesen_US
dc.subject120326 Simulaciónen_US
dc.subject.otherCCD camerasen_US
dc.subject.otherAnisotropic diffusionen_US
dc.subject.otherFilteringen_US
dc.subject.otherNoise estimationen_US
dc.titleAdaptive noise-reducing anisotropic diffusion filteren_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00521-015-1933-9en_US
dc.identifier.isi000378152800015-
dc.identifier.eissn1433-3058-
dc.description.lastpage1300en_US
dc.identifier.issue5-
dc.description.firstpage1273en_US
dc.relation.volume27en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid2168641-
dc.contributor.daisngid34942898-
dc.contributor.daisngid241156-
dc.contributor.daisngid631655-
dc.contributor.daisngid3898650-
dc.contributor.daisngid1202623-
dc.description.numberofpages28en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Ben Abdallah, M-
dc.contributor.wosstandardWOS:Malek, J-
dc.contributor.wosstandardWOS:Azar, AT-
dc.contributor.wosstandardWOS:Belmabrouk, H-
dc.contributor.wosstandardWOS:Monreal, JE-
dc.contributor.wosstandardWOS:Krissian, K-
dc.date.coverdateJulio 2016en_US
dc.identifier.ulpgces
dc.description.sjr0,637
dc.description.jcr2,505
dc.description.sjrqQ2
dc.description.jcrqQ2
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IUCES: Centro de Tecnologías de la Imagen-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.orcid0000-0003-1339-8700-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNameEsclarín Monreal,Julio-
crisitem.author.fullNameKrissian , Karl-
Appears in Collections:Artículos
Show simple item record

WEB OF SCIENCETM
Citations

25
checked on Nov 17, 2024

Page view(s)

44
checked on Jun 10, 2023

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.