Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/71799
DC FieldValueLanguage
dc.contributor.authorPascu, Alexandruen_US
dc.contributor.authorMirza Rosca, Juliaen_US
dc.contributor.authorStanciu, Elena Manuelaen_US
dc.date.accessioned2020-04-28T14:11:36Z-
dc.date.available2020-04-28T14:11:36Z-
dc.date.issued2019en_US
dc.identifier.issn2214-7853en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/71799-
dc.description.abstractIn the case of aircraft jet engine blades reconditioning through cladding, it is critical to obtain a perfect bonding between the cladded layer and the substrate to prevent any loss of material during the engine exploitation, which could lead to critical failure. This paper addresses to the reconditioning of VT3-1 titanium jet engine blades through laser cladding. The experimental laser cladding reconditioning was carried out using an TRUMPH TruPulse 556 laser and a coaxial cladding head manipulated by an 9-axis robotic cell. Pure titanium powder was supplied into the coaxial cladding module for reconstruction of the damaged blade. The reconditioning process was carried out using a spot diameter of 1.8 mm and 800 W laser power at a frequency of 90 Hz. Argon was supplied as shielding gas. The engine blades were cross-sectioned and analyzed by optical and electron microscopy and EDS elemental microanalyses. The main advantages of the laser cladding process are good metallurgical bonding and lower heat input during the reconditioning process compared with other conventional remanufacturing processes. (C) 2019 Elsevier Ltd. All rights reserved.en_US
dc.languageengen_US
dc.relation.ispartofMaterials today: proceedingsen_US
dc.sourceMaterials today: proceedings [ISSN 2214-7853], v. 19 (Part 3), p. 1059-1065en_US
dc.subject3312 Tecnología de materialesen_US
dc.subject.otherTitaniumen_US
dc.subject.otherFatigueen_US
dc.subject.otherLaser Claddingen_US
dc.subject.otherReconditioningen_US
dc.subject.otherEngine Bladesen_US
dc.titleLaser cladding: from experimental research to industrial applicationsen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference11th International Conference on Materials Science and Engineering (BraMat)en_US
dc.identifier.doi10.1016/j.matpr.2019.08.021en_US
dc.identifier.isi000496428200022-
dc.description.lastpage1065en_US
dc.description.firstpage1059en_US
dc.relation.volume19en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.contributor.daisngid683098-
dc.contributor.daisngid6701872-
dc.contributor.daisngid2177675-
dc.description.numberofpages7en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Pascu, A-
dc.contributor.wosstandardWOS:Rosca, JM-
dc.contributor.wosstandardWOS:Stanciu, EM-
dc.date.coverdate2019en_US
dc.identifier.conferenceidevents121179-
dc.identifier.ulpgcen_US
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.event.eventsstartdate13-03-2019-
crisitem.event.eventsenddate16-03-2019-
crisitem.author.deptGIR Nanomaterials and Corrosion-
crisitem.author.deptDepartamento de Ingeniería Mecánica-
crisitem.author.orcid0000-0003-0623-3318-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.fullNameMirza Rosca, Julia Claudia-
Appears in Collections:Actas de congresos
Show simple item record

WEB OF SCIENCETM
Citations

14
checked on Nov 17, 2024

Page view(s)

118
checked on Nov 9, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.