Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/71040
Title: Multisensor fusion for the accurate classification of vegetation in complex ecosystems
Authors: Marcello Ruiz, Francisco Javier 
Rodríguez Esparragón, Dionisio 
Ibarrola Ulzurrun, Edurne 
Gonzalo Martin,Consuelo 
UNESCO Clasification: 220990 Tratamiento digital. Imágenes
Keywords: Remote sensing
Hyperspectral
Sharpening
Classification
Ecosystems
Issue Date: 2019
Publisher: Institute of Electrical and Electronics Engineers (IEEE)
Project: Procesado Avanzado de Datos de Teledetección Para la Monitorización y Gestión Sostenible de Recursos Marinos y Terrestres en Ecosistemas Vulnerables. 
Conference: 2019 IEEE International Work Conference on Bioinspired Intelligence, IWOBI 2019 
Abstract: The use of geospatial tools to monitor natural ecosystems is a fundamental task to preserve the environment. In this context, remote sensing data can provide a valuable source of information to complement field observations, offering frequent and accurate imagery to support the mapping and monitoring of natural areas. The growing availability of hyperspectral (HS) data can provide a valuable solution but the spectral richness provided by hyperspectral sensors is usually at the expense of spatial resolution. To alleviate this inconvenience, instead of satellite platforms, airborne sensors can be considered. In this work, the accurate mapping of a complex shrubland ecosystem has been accomplished using multisensor imagery. Specifically, airborne CASI data (68 bands and 75 cm of pixel size) has been fused with an orthophoto (25 cm) to increase the spatial detail. A comprehensive analysis of 11 sharpening algorithms has been performed and, to improve the Support Vector Machine (SVM) classification accuracy, different input features have been considered. Excellent results have been achieved and the importance to improve the spatial resolution has been demonstrated.
URI: http://hdl.handle.net/10553/71040
ISBN: 978-1-7281-0967-1
DOI: 10.1109/IWOBI47054.2019.9114397
Source: IWOBI 2019 IEEE International Work Conference on Bioinspired Intelligence, July 3-5, 2019, Budapest, Hungary, p. 81-86
Appears in Collections:Actas de congresos
Show full item record

Page view(s)

37
checked on Feb 21, 2021

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.