Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/71024
DC FieldValueLanguage
dc.contributor.authorMartel Escobar, María del Carmenen_US
dc.contributor.authorNegrín Medina, Miguel Angelen_US
dc.contributor.authorVázquez Polo, Francisco Joséen_US
dc.date.accessioned2020-03-24T11:02:46Z-
dc.date.available2020-03-24T11:02:46Z-
dc.date.issued2007en_US
dc.identifier.isbn978-84-690-7249-3en_US
dc.identifier.otherDialnet-
dc.identifier.urihttp://hdl.handle.net/10553/71024-
dc.description.abstractThe Bayesian approach to statistics has been growing rapidly in popularity as an alternative to the classical approach in the economic evaluation of health technologies. Bayesian approach has significant benefits over the classical approach. One of the most important advantages of the Bayesian methods is the incorporation of prior information. Thus, Bayesian methods can make use of more available information, and so produce stronger results than frequentist methods. In a cost ¿effectiveness analysis we relate the costs and efficacies of the two technologies compared. The parameters of interest are the mean efficacy and mean cost of each technology. The most common prior structure for both parameters is the bivariate normal structure. In this paper we study the use of a more general family of prior distributions for the parameters. In particular we assume that conditional densities of the parameters are all normal. This structure allows incorporating a large range of prior information. The bivariate normal distribution is included as a particular case of the conditional prior structure.en_US
dc.languageengen_US
dc.sourceActas del XXX Congreso Nacional de Estadística e Investigación Operativa y de las IV Jornadas de Estadística Pública, p. 203en_US
dc.subject5302 Econometríaen_US
dc.titleA fully bayesian cost-effectiveness analysis using conditionally specified prior distributionsen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.identifier.urlhttp://dialnet.unirioja.es/servlet/articulo?codigo=3149627-
dc.description.lastpage203-
dc.description.firstpage203-
dc.investigacionCiencias Sociales y Jurídicasen_US
dc.type2Actas de congresosen_US
dc.description.notasComité organizador del XXX Congreso Nacional de Estadística e Investigación Operativa y IV Jornadas de Estadística Pública. Recoge los contenidos presentados a: Congreso Nacional de Estadística e Investigación Operativa (30. 2007. Valladolid)en_US
dc.contributor.authordialnetid1132051-
dc.contributor.authordialnetidNo ID-
dc.contributor.authordialnetid243388-
dc.identifier.dialnet3149627ARTLIB-
dc.utils.revisionen_US
dc.identifier.ulpgces
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR TIDES- Técnicas estadísticas bayesianas y de decisión en la economía y empresa-
crisitem.author.deptIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.deptDepartamento de Métodos Cuantitativos en Economía y Gestión-
crisitem.author.deptGIR TIDES- Técnicas estadísticas bayesianas y de decisión en la economía y empresa-
crisitem.author.deptIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.deptDepartamento de Métodos Cuantitativos en Economía y Gestión-
crisitem.author.orcid0000-0002-7013-4747-
crisitem.author.orcid0000-0002-0632-6138-
crisitem.author.parentorgIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.parentorgIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.fullNameMartel Escobar, María Carmen-
crisitem.author.fullNameVázquez Polo, Francisco José-
Appears in Collections:Actas de congresos
Show simple item record

Page view(s)

86
checked on Dec 21, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.