Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/71000
Título: Transfer Learning based Computer Vision Technology for Assisting Visually Impaired for detection of Common Places
Autores/as: Jaiswar, Lalita
Yadav, Anjali
Dutta, Malay Kishore
Travieso-González, Carlos 
Esteban-Hernández, Luis
Clasificación UNESCO: 33 Ciencias tecnológicas
Palabras clave: Features Extraction
Object Recognition
Pedestrians Signs
Public Places
Transfer Learning, et al.
Fecha de publicación: 2020
Editor/a: Association for Computing Machinery 
Conferencia: International Conference on Applications of Intelligent Systems (APPIS 2020) 
Resumen: Visually impaired people face several problems in their daily life. One of the biggest problems is to visiting unfamiliar places and identifying public places like pharmacy store, restrooms, pedestrian signs on roads, etc. Although there are some conventional methods that are available to aid visually impaired people but these are inefficient to use without assistance. The proposed method presents a framework which will help visually impaired people to identify the common public amenities while visiting any unfamiliar places. This method uses deep learning for recognizing some daily used places. For this purpose, VGG16 model is used to extract features from the images and train the sequential model. The model has been tested on varying images of different class that are present in the database. The developed algorithm achieves an accuracy of 95.88%. The obtained result of the developed model shows that it is an efficient method for assisting visually impaired people in real time application.
URI: http://hdl.handle.net/10553/71000
ISBN: 978-1-4503-7630-3
DOI: 10.1145/3378184.3378215
Fuente: APPIS 2020: Proceedings of the 3rd International Conference on Applications of Intelligent Systems. January 2020, article n. 19, p. 1–6
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

4
actualizado el 15-dic-2024

Visitas

93
actualizado el 11-feb-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.