Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/71000
Campo DC Valoridioma
dc.contributor.authorJaiswar, Lalitaen_US
dc.contributor.authorYadav, Anjalien_US
dc.contributor.authorDutta, Malay Kishoreen_US
dc.contributor.authorTravieso-González, Carlosen_US
dc.contributor.authorEsteban-Hernández, Luisen_US
dc.date.accessioned2020-03-21T06:05:58Z-
dc.date.available2020-03-21T06:05:58Z-
dc.date.issued2020en_US
dc.identifier.isbn978-1-4503-7630-3en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/71000-
dc.description.abstractVisually impaired people face several problems in their daily life. One of the biggest problems is to visiting unfamiliar places and identifying public places like pharmacy store, restrooms, pedestrian signs on roads, etc. Although there are some conventional methods that are available to aid visually impaired people but these are inefficient to use without assistance. The proposed method presents a framework which will help visually impaired people to identify the common public amenities while visiting any unfamiliar places. This method uses deep learning for recognizing some daily used places. For this purpose, VGG16 model is used to extract features from the images and train the sequential model. The model has been tested on varying images of different class that are present in the database. The developed algorithm achieves an accuracy of 95.88%. The obtained result of the developed model shows that it is an efficient method for assisting visually impaired people in real time application.en_US
dc.languageengen_US
dc.publisherAssociation for Computing Machineryen_US
dc.sourceAPPIS 2020: Proceedings of the 3rd International Conference on Applications of Intelligent Systems. January 2020, article n. 19, p. 1–6en_US
dc.subject33 Ciencias tecnológicasen_US
dc.subject.otherFeatures Extractionen_US
dc.subject.otherObject Recognitionen_US
dc.subject.otherPedestrians Signsen_US
dc.subject.otherPublic Placesen_US
dc.subject.otherTransfer Learningen_US
dc.subject.otherVgg16en_US
dc.subject.otherVisually Impaireden_US
dc.titleTransfer Learning based Computer Vision Technology for Assisting Visually Impaired for detection of Common Placesen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conferenceInternational Conference on Applications of Intelligent Systems (APPIS 2020)en_US
dc.identifier.doi10.1145/3378184.3378215en_US
dc.identifier.scopus85081094089-
dc.contributor.authorscopusid57215532998-
dc.contributor.authorscopusid57195513394-
dc.contributor.authorscopusid35291803600-
dc.contributor.authorscopusid57201316633-
dc.contributor.authorscopusid57215532908-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.identifier.conferenceidevents121681-
dc.identifier.ulpgces
dc.contributor.buulpgcBU-TELen_US
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameTravieso González, Carlos Manuel-
crisitem.event.eventsstartdate07-01-2020-
crisitem.event.eventsenddate09-01-2020-
Colección:Actas de congresos
Vista resumida

Citas SCOPUSTM   

4
actualizado el 15-dic-2024

Visitas

93
actualizado el 11-feb-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.