Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/70819
Título: | Promentor - Data mining applied to job search | Autores/as: | Rodríguez Rodríguez, José Carlos De Blasio , Gabriele Salvatore García Rodríguez, Carmelo Rubén Quesada Arencibia, Francisco Alexis |
Clasificación UNESCO: | 1203 Ciencia de los ordenadores | Palabras clave: | Data mining Job search Employment website Training |
Fecha de publicación: | 2019 | Editor/a: | Universidad de Las Palmas de Gran Canaria (ULPGC) | Conferencia: | International Conference on Computer Aided Systems Theory (EUROCAST 2019) | Resumen: | Promentor is a solution that advises jobseekers on how to effectively improve their chances of obtaining employment in a specific field by focusing on what, at least historically, seems to have produced the best results. First, Promentor analyses previous selection processes to quantitatively evaluate the value of the information provided by the candidates during the process. Promentor uses this evaluation to assess the value of the profile of the jobseeker who is requesting advice based on the information it contains. It then conducts a simulation by applying each suggestion to the profile and evaluating the results. In this way, it identifies which suggestions improve the profile the most. Promentor is a module on the GetaJob.es employment website, which was developed in parallel and equipped with specific capabilities for capturing the data that Promentor requires. | URI: | http://hdl.handle.net/10553/70819 | ISBN: | 978-3-030-45096-0 | Fuente: | EUROCAST 2019. Computer Aided Systems Theory. Extended abstracts / Alexis Quesada-Arencibia; José Carlos Rodríguez; Roberto Moreno-Díaz; Roberto Moreno-Díaz jr.; Gabriel de Blasio; Carmelo Rubén García (eds.), p. 27-28 |
Colección: | Actas de congresos |
Visitas
117
actualizado el 10-feb-2024
Descargas
43
actualizado el 10-feb-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.