Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/70817
Title: | A character validation proposal for high-speed visual monitoring of expiration codes on beverage cans | Authors: | Rodríguez Rodríguez, José Carlos De Blasio , Gabriele Salvatore García Rodríguez, Carmelo Rubén Quesada Arencibia, Francisco Alexis |
UNESCO Clasification: | 1203 Ciencia de los ordenadores | Keywords: | Image processing High-speed computing Optical character recognition (OCR) Pattern recognition Industrial inspection, et al |
Issue Date: | 2019 | Journal: | Proceedings (MDPI) | Conference: | 13th International Conference on Ubiquitous Computing and Ambient Intelligence - UCAmI 2019 | Abstract: | Character recognizers have generally focused on printed text on paper with an emphasis on generality rather than speed. This makes the proposed algorithms not applicable in the context of the very high-speed industrial validation of expiration codes printed on the metal surface of a can. The extreme demands of speed and the adverse effects of lighting and movement, among other things, make it necessary to develop an original and specific strategy. The strategy presented in this paper first selects which of the segmented shapes of a printed can are the best candidates for comparison with expected characters. This is followed by a technique based on the comparison of templates (templates matching), which we call “morphologies”, and are represented as bitmaps to take advantage of the hardware capabilities of general-purpose processors. The use of templates has the advantage of avoiding the construction of a feature vector. In an acquisition test in a real industrial plant, we have been able to successfully treat 438 cans in 44 s, with only one validation error in one character, achieving a compromise between speed and quality that is sufficient for industrial validation in the conditions cited. | URI: | http://hdl.handle.net/10553/70817 | ISSN: | 2504-3900 | DOI: | 10.3390/proceedings2019031056 | Source: | Proceedings (MDPI) [ISSN 2504-3900], v. 31 (1), 56 |
Appears in Collections: | Artículos |
Page view(s)
87
checked on Sep 30, 2023
Download(s)
85
checked on Sep 30, 2023
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.