Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/70815
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Cristóbal, Teresa | en_US |
dc.contributor.author | Padrón Morales, Gabino | en_US |
dc.contributor.author | Quesada Arencibia, Francisco Alexis | en_US |
dc.contributor.author | Alayón Hernández, Francisco Javier | en_US |
dc.contributor.author | De Blasio , Gabriele Salvatore | en_US |
dc.contributor.author | García Rodríguez, Carmelo Rubén | en_US |
dc.date.accessioned | 2020-03-10T14:00:56Z | - |
dc.date.available | 2020-03-10T14:00:56Z | - |
dc.date.issued | 2019 | en_US |
dc.identifier.issn | 2504-3900 | en_US |
dc.identifier.other | Proceedings of 13th International Conference on Ubiquitous Computing and Ambient Intelligence UCAmI 2019 [2504-3900], vol. 31(1), 18 | - |
dc.identifier.uri | http://hdl.handle.net/10553/70815 | - |
dc.description.abstract | In road-based mass transit systems, the travel time is a key factor affecting quality of service. For this reason, to know the behavior of this time is a relevant challenge. Clustering methods are interesting tools for knowledge modeling because these are unsupervised techniques, allowing hidden behavior patterns in large data sets to be found. In this contribution, a study on the utility of different clustering techniques to obtain behavior pattern of travel time is presented. The study analyzed three clustering techniques: K-medoid, Diana, and Hclust, studying how two key factors of these techniques (distance metric and clusters number) affect the results obtained. The study was conducted using transport activity data provided by a public transport operator. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Proceedings (MDPI) | en_US |
dc.source | Proceedings (MDPI) [ISSN 2504-3900], v. 31 (1), 18 | en_US |
dc.subject | 3327 Tecnología de los sistemas de transporte | en_US |
dc.subject | 120304 Inteligencia artificial | en_US |
dc.subject.other | Clustering | en_US |
dc.subject.other | Data mining | en_US |
dc.subject.other | Intelligent transport systems | en_US |
dc.subject.other | Mass transit systems | en_US |
dc.title | A study on the behavior of clustering techniques for modeling travel time in road-based mass transit systems | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.type | Article | en_US |
dc.relation.conference | 13th International Conference on Ubiquitous Computing and Ambient Intelligence - UCAmI 2019 | - |
dc.identifier.doi | 10.3390/proceedings2019031018 | en_US |
dc.identifier.issue | 1 | - |
dc.description.firstpage | 18 | en_US |
dc.relation.volume | 31 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.utils.revision | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-INF | en_US |
item.grantfulltext | open | - |
item.fulltext | Con texto completo | - |
crisitem.event.eventsstartdate | 02-12-2019 | - |
crisitem.event.eventsenddate | 05-12-2019 | - |
crisitem.author.dept | GIR IUCES: Computación inteligente, percepción y big data | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.dept | GIR IUCES: Computación inteligente, percepción y big data | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.dept | GIR IUCES: Computación inteligente, percepción y big data | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | GIR IUCES: Computación inteligente, percepción y big data | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.dept | GIR IUCES: Computación inteligente, percepción y big data | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.orcid | 0000-0002-5573-1156 | - |
crisitem.author.orcid | 0000-0002-8313-5124 | - |
crisitem.author.orcid | 0000-0002-7285-9194 | - |
crisitem.author.orcid | 0000-0002-6233-567X | - |
crisitem.author.orcid | 0000-0003-1433-3730 | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.fullName | Padrón Morales, Gabino | - |
crisitem.author.fullName | Quesada Arencibia, Francisco Alexis | - |
crisitem.author.fullName | Alayón Hernández,Francisco Javier | - |
crisitem.author.fullName | De Blasio, Gabriele Salvatore | - |
crisitem.author.fullName | García Rodríguez, Carmelo Rubén | - |
Colección: | Artículos |
Visitas
95
actualizado el 30-sep-2023
Descargas
93
actualizado el 30-sep-2023
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.