Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/70815
DC FieldValueLanguage
dc.contributor.authorCristóbal, Teresaen_US
dc.contributor.authorPadrón Morales, Gabinoen_US
dc.contributor.authorQuesada Arencibia, Francisco Alexisen_US
dc.contributor.authorAlayón Hernández, Francisco Javieren_US
dc.contributor.authorDe Blasio , Gabriele Salvatoreen_US
dc.contributor.authorGarcía Rodríguez, Carmelo Rubénen_US
dc.date.accessioned2020-03-10T14:00:56Z-
dc.date.available2020-03-10T14:00:56Z-
dc.date.issued2019en_US
dc.identifier.issn2504-3900en_US
dc.identifier.otherProceedings of 13th International Conference on Ubiquitous Computing and Ambient ‪Intelligence UCAmI 2019 [2504-3900], vol. 31(1), 18-
dc.identifier.urihttp://hdl.handle.net/10553/70815-
dc.description.abstractIn road-based mass transit systems, the travel time is a key factor affecting quality of service. For this reason, to know the behavior of this time is a relevant challenge. Clustering methods are interesting tools for knowledge modeling because these are unsupervised techniques, allowing hidden behavior patterns in large data sets to be found. In this contribution, a study on the utility of different clustering techniques to obtain behavior pattern of travel time is presented. The study analyzed three clustering techniques: K-medoid, Diana, and Hclust, studying how two key factors of these techniques (distance metric and clusters number) affect the results obtained. The study was conducted using transport activity data provided by a public transport operator.en_US
dc.languageengen_US
dc.relation.ispartofProceedings (MDPI)en_US
dc.sourceProceedings (MDPI) [ISSN 2504-3900], v. 31 (1), 18en_US
dc.subject3327 Tecnología de los sistemas de transporteen_US
dc.subject120304 Inteligencia artificialen_US
dc.subject.otherClusteringen_US
dc.subject.otherData miningen_US
dc.subject.otherIntelligent transport systemsen_US
dc.subject.otherMass transit systemsen_US
dc.titleA study on the behavior of clustering techniques for modeling travel time in road-based mass transit systemsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.relation.conference13th International Conference on Ubiquitous Computing and Ambient ‪Intelligence - UCAmI 2019-
dc.identifier.doi10.3390/proceedings2019031018en_US
dc.identifier.issue1-
dc.description.firstpage18en_US
dc.relation.volume31en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.event.eventsstartdate02-12-2019-
crisitem.event.eventsenddate05-12-2019-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0002-5573-1156-
crisitem.author.orcid0000-0002-8313-5124-
crisitem.author.orcid0000-0002-7285-9194-
crisitem.author.orcid0000-0002-6233-567X-
crisitem.author.orcid0000-0003-1433-3730-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNamePadrón Morales, Gabino-
crisitem.author.fullNameQuesada Arencibia, Francisco Alexis-
crisitem.author.fullNameAlayón Hernández,Francisco Javier-
crisitem.author.fullNameDe Blasio, Gabriele Salvatore-
crisitem.author.fullNameGarcía Rodríguez, Carmelo Rubén-
Appears in Collections:Artículos
Thumbnail
Adobe PDF (1,15 MB)
Show simple item record

Page view(s)

95
checked on Sep 30, 2023

Download(s)

93
checked on Sep 30, 2023

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.