Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/70579
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Marras, Mirko | en_US |
dc.contributor.author | Marín-Reyes, Pedro A. | en_US |
dc.contributor.author | Lorenzo-Navarro, Javier | en_US |
dc.contributor.author | Castrillón-Santana, Modesto | en_US |
dc.contributor.author | Fenu, Gianni | en_US |
dc.date.accessioned | 2020-02-29T06:04:01Z | - |
dc.date.available | 2020-02-29T06:04:01Z | - |
dc.date.issued | 2020 | en_US |
dc.identifier.isbn | 978-3-030-40013-2 | en_US |
dc.identifier.issn | 0302-9743 | en_US |
dc.identifier.other | Scopus | - |
dc.identifier.uri | http://hdl.handle.net/10553/70579 | - |
dc.description.abstract | From border controls to personal devices, from online exam proctoring to human-robot interaction, biometric technologies are empowering individuals and organizations with convenient and secure authentication and identification services. However, most biometric systems leverage only a single modality, and may face challenges related to acquisition distance, environmental conditions, data quality, and computational resources. Combining evidence from multiple sources at a certain level (e.g., sensor, feature, score, or decision) of the recognition pipeline may mitigate some limitations of the common uni-biometric systems. Such a fusion has been rarely investigated at intermediate level, i.e., when uni-biometric model parameters are jointly optimized during training. In this chapter, we propose a multi-biometric model training strategy that digests face and voice traits in parallel, and we explore how it helps to improve recognition performance in re-identification and verification scenarios. To this end, we design a neural architecture for jointly embedding face and voice data, and we experiment with several training losses and audio-visual datasets. The idea is to exploit the relation between voice characteristics and facial morphology, so that face and voice uni-biometric models help each other to recognize people when trained jointly. Extensive experiments on four real-world datasets show that the biometric feature representation of a uni-biometric model jointly trained performs better than the one computed by the same uni-biometric model trained alone. Moreover, the recognition results are further improved by embedding face and voice data into a single shared representation of the two modalities. The proposed fusion strategy generalizes well on unseen and unheard users, and should be considered as a feasible solution that improves model performance. We expect that this chapter will support the biometric community to shape the research on deep audio-visual fusion in real-world contexts. | en_US |
dc.language | eng | en_US |
dc.publisher | Springer | en_US |
dc.relation | Identificación Automática de Oradores en Sesiones Parlamentarias Usando Características Audiovisuales. | en_US |
dc.relation.ispartof | Lecture Notes in Computer Science | en_US |
dc.source | Pattern Recognition Applications and Methods. ICPRAM 2019. Lecture Notes in Computer Science, v. 11996, p. 136-157 | en_US |
dc.subject | 120304 Inteligencia artificial | en_US |
dc.subject.other | Audio-visual learning | en_US |
dc.subject.other | Cross-modal biometrics | en_US |
dc.subject.other | Deep biometric fusion | en_US |
dc.subject.other | Multi-biometric system | en_US |
dc.subject.other | Re-identification | en_US |
dc.subject.other | Verification | en_US |
dc.title | Deep multi-biometric fusion for audio-visual user re-identification and verification | en_US |
dc.type | info:eu-repo/semantics/bookPart | en_US |
dc.type | Book part | en_US |
dc.relation.conference | 8th International Conference on Pattern Recognition Applications and Methods, ICPRAM 2019 | |
dc.identifier.doi | 10.1007/978-3-030-40014-9_7 | en_US |
dc.identifier.scopus | 85079549512 | - |
dc.contributor.authorscopusid | 9233842500 | - |
dc.contributor.authorscopusid | 57191274555 | - |
dc.contributor.authorscopusid | 15042453800 | - |
dc.contributor.authorscopusid | 57198776493 | - |
dc.contributor.authorscopusid | 24469552000 | - |
dc.description.lastpage | 157 | en_US |
dc.description.firstpage | 136 | en_US |
dc.relation.volume | 11996 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Capítulo de libro | en_US |
dc.identifier.eisbn | 978-3-030-40014-9 | - |
dc.utils.revision | Sí | en_US |
dc.identifier.supplement | 0302-9743 | - |
dc.identifier.supplement | 0302-9743 | - |
dc.identifier.supplement | 0302-9743 | - |
dc.identifier.supplement | 0302-9743 | - |
dc.identifier.conferenceid | events121650 | - |
dc.identifier.ulpgc | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-INF | en_US |
dc.contributor.buulpgc | BU-INF | en_US |
dc.contributor.buulpgc | BU-INF | en_US |
dc.contributor.buulpgc | BU-INF | en_US |
dc.description.sjr | 0,249 | |
dc.description.sjrq | Q3 | |
dc.description.spiq | Q1 | |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.project.principalinvestigator | Castrillón Santana, Modesto Fernando | - |
crisitem.event.eventsstartdate | 19-02-2019 | - |
crisitem.event.eventsenddate | 21-02-2019 | - |
crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.orcid | 0000-0002-2834-2067 | - |
crisitem.author.orcid | 0000-0002-8673-2725 | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.fullName | Marín Reyes, Pedro Antonio | - |
crisitem.author.fullName | Lorenzo Navarro, José Javier | - |
crisitem.author.fullName | Castrillón Santana, Modesto Fernando | - |
Colección: | Capítulo de libro |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.