Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/70579
Título: Deep multi-biometric fusion for audio-visual user re-identification and verification
Autores/as: Marras, Mirko
Marín-Reyes, Pedro A. 
Lorenzo-Navarro, Javier 
Castrillón-Santana, Modesto 
Fenu, Gianni
Clasificación UNESCO: 120304 Inteligencia artificial
Palabras clave: Audio-visual learning
Cross-modal biometrics
Deep biometric fusion
Multi-biometric system
Re-identification, et al.
Fecha de publicación: 2020
Editor/a: Springer 
Proyectos: Identificación Automática de Oradores en Sesiones Parlamentarias Usando Características Audiovisuales. 
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 8th International Conference on Pattern Recognition Applications and Methods, ICPRAM 2019 
Resumen: From border controls to personal devices, from online exam proctoring to human-robot interaction, biometric technologies are empowering individuals and organizations with convenient and secure authentication and identification services. However, most biometric systems leverage only a single modality, and may face challenges related to acquisition distance, environmental conditions, data quality, and computational resources. Combining evidence from multiple sources at a certain level (e.g., sensor, feature, score, or decision) of the recognition pipeline may mitigate some limitations of the common uni-biometric systems. Such a fusion has been rarely investigated at intermediate level, i.e., when uni-biometric model parameters are jointly optimized during training. In this chapter, we propose a multi-biometric model training strategy that digests face and voice traits in parallel, and we explore how it helps to improve recognition performance in re-identification and verification scenarios. To this end, we design a neural architecture for jointly embedding face and voice data, and we experiment with several training losses and audio-visual datasets. The idea is to exploit the relation between voice characteristics and facial morphology, so that face and voice uni-biometric models help each other to recognize people when trained jointly. Extensive experiments on four real-world datasets show that the biometric feature representation of a uni-biometric model jointly trained performs better than the one computed by the same uni-biometric model trained alone. Moreover, the recognition results are further improved by embedding face and voice data into a single shared representation of the two modalities. The proposed fusion strategy generalizes well on unseen and unheard users, and should be considered as a feasible solution that improves model performance. We expect that this chapter will support the biometric community to shape the research on deep audio-visual fusion in real-world contexts.
URI: http://hdl.handle.net/10553/70579
ISBN: 978-3-030-40013-2
ISSN: 0302-9743
DOI: 10.1007/978-3-030-40014-9_7
Fuente: Pattern Recognition Applications and Methods. ICPRAM 2019. Lecture Notes in Computer Science, v. 11996, p. 136-157
Colección:Capítulo de libro
Vista completa

Citas SCOPUSTM   

9
actualizado el 10-nov-2024

Citas de WEB OF SCIENCETM
Citations

2
actualizado el 10-nov-2024

Visitas

207
actualizado el 01-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.