Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/70374
Título: A contribution of Natural Language Processing to the study of semantic memory loss in patients with Alzheimer’s disease
Autores/as: Pérez Cabello de Alba, Beatriz
Clasificación UNESCO: 570107 Lengua y literatura
550510 Filología
Palabras clave: Natural Language Processing
FunGramKB
Semantic memory loss
Alzheimer’s disease
Fecha de publicación: 2017
Publicación seriada: LFE. Revista de Lenguas para Fines Específicos 
Resumen: This paper addresses semantic memory loss from the perspective of Natural Language Processing. Dementia disorders and, in particular, Alzheimer’s disease (AD) present a loss of cognitive functions, being one of them semantic memory impairment. We set from a study conducted by Grasso, Díaz & Peraita (2011) where they analysed the production of features of four semantic categories (2 Living Beings and 2 Non Living Beings) of healthy subjects and patients with different levels of Alzheimer’s disease, taken from the Linguistic corpus of semantic categories definitions elaborated by Peraita & Grasso (2010). The aim of this work is to enhance the protocol of semantic features employed in that study by using Natural Language Processing systems such as FunGramKB (Periñán-Pascual & Arcas Túnez 2004, 2005, 2006, 2007, 2010). This lexical-conceptual knowledge base incorporates a series of feature descriptors for the definition of semantic knowledge which, together with the inheritance and inference relations established among concepts in the ontology, will enrich the collection of semantic features used in the test of semantic attributes production for the detection of semantic memory impairment (Grasso, Díaz & Peraita, 2011).
URI: http://hdl.handle.net/10553/70374
ISSN: 1133-1127
DOI: 10.20420/rlfe.2017.176
Fuente: LFE. Revista de lenguas para fines específicos [eISSN 2340-8561], v. 23 (2), p. 133-156
Colección:Artículos
miniatura
pdf
Adobe PDF (1,93 MB)
Vista completa

Visitas

230
actualizado el 02-mar-2024

Descargas

178
actualizado el 02-mar-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.