Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/70324
Título: | Alzheimer's disease and automatic speech analysis: A review | Autores/as: | Barragán Pulido, María Luisa Alonso Hernández, Jesús Bernardino Ferrer Ballester, Miguel Ángel Travieso González, Carlos Manuel Mekyska, Jiří Smékal, Zdeněk |
Clasificación UNESCO: | 320507 Neurología 3314 Tecnología médica |
Palabras clave: | Alzheimer'S Disease (AD) Automatic Processing Speech Voice |
Fecha de publicación: | 2020 | Publicación seriada: | Expert Systems with Applications | Resumen: | The objective of this paper is to present the state of-the-art relating to automatic speech and voice analysis techniques as applied to the monitoring of patients suffering from Alzheimer's disease as well as to shed light on possible future research topics. This work reviews more than 90 papers in the existing literature and focuses on the main feature extraction techniques and classification methods used. In order to guide researchers interested in working in this area, the most frequently used data repositories are also given. Likewise, it identifies the most clinically relevant results and the current lines developed in the field. Automatic speech analysis, within the Health 4.0 framework, offers the possibility of assessing these patients, without the need for a specific infrastructure, by means of non-invasive, fast and inexpensive techniques as a complement to the current diagnostic methods. | URI: | http://hdl.handle.net/10553/70324 | ISSN: | 0957-4174 | DOI: | 10.1016/j.eswa.2020.113213 | Fuente: | Expert Systems With Applications [ISSN 0957-4174], v. 150, 113213, (Julio 2020) |
Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.