Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/70324
Título: Alzheimer's disease and automatic speech analysis: A review
Autores/as: Barragán Pulido, María Luisa 
Alonso Hernández, Jesús Bernardino 
Ferrer Ballester, Miguel Ángel 
Travieso González, Carlos Manuel 
Mekyska, Jiří
Smékal, Zdeněk 
Clasificación UNESCO: 320507 Neurología
3314 Tecnología médica
Palabras clave: Alzheimer'S Disease (AD)
Automatic Processing
Speech
Voice
Fecha de publicación: 2020
Publicación seriada: Expert Systems with Applications 
Resumen: The objective of this paper is to present the state of-the-art relating to automatic speech and voice analysis techniques as applied to the monitoring of patients suffering from Alzheimer's disease as well as to shed light on possible future research topics. This work reviews more than 90 papers in the existing literature and focuses on the main feature extraction techniques and classification methods used. In order to guide researchers interested in working in this area, the most frequently used data repositories are also given. Likewise, it identifies the most clinically relevant results and the current lines developed in the field. Automatic speech analysis, within the Health 4.0 framework, offers the possibility of assessing these patients, without the need for a specific infrastructure, by means of non-invasive, fast and inexpensive techniques as a complement to the current diagnostic methods.
URI: http://hdl.handle.net/10553/70324
ISSN: 0957-4174
DOI: 10.1016/j.eswa.2020.113213
Fuente: Expert Systems With Applications [ISSN 0957-4174], v. 150, 113213, (Julio 2020)
Colección:Artículos
Unknown (1,58 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.