Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/70211
Campo DC Valoridioma
dc.contributor.authorLorenzo Navarro, José Javieren_US
dc.contributor.authorCastrillón Santana, Modesto Fernandoen_US
dc.contributor.authorSantesarti, Enricoen_US
dc.contributor.authorDe Marsico, Mariaen_US
dc.contributor.authorMartínez Sánchez, Icoen_US
dc.contributor.authorRaymond, Eugenioen_US
dc.contributor.authorGómez Cabrera, María Milagrosaen_US
dc.contributor.authorHerrera Ulibarri, Aliciaen_US
dc.date.accessioned2020-02-09T20:58:50Z-
dc.date.available2020-02-09T20:58:50Z-
dc.date.issued2020en_US
dc.identifier.issn2169-3536en_US
dc.identifier.urihttp://hdl.handle.net/10553/70211-
dc.description.abstractThe management of plastic debris is a serious issue due to its durability. Unfortunately, million tons of plastic end up in the sea becoming one of the biggest current environmental problems. One way to monitor the amount of plastic in beaches is to collect samples and visually count and sort the plastic particles present in them. This is a very time-consuming task. In this work, we present a Computer Vision-based system which is able to automatically count and classify microplastic particles (1-5 mm) into ve different visual classes. After cleaning a collected sample in the lab, the proposed system makes use of a pair of its images with different characteristics. The procedure includes a segmentation step, which is based on the Sauvola thresholding method, followed by a feature extraction and classi cation step. Different features and classi ers are evaluated as well as a deep learning approach. The system is tested on 12 different beach samples with a total of 2507 microplastic particles. The particles of each sample were manually counted and sorted by an expert. This data represents the ground truth, which is compared later with the results of the automatic processing proposals to evaluate their accuracy. The difference in the number of particles is 34 (1.4%) and the error in their classi cation is less than 4% for all types except for the line shapes particles. These results are obtained in less than half of the time needed by the human expert doing the same task manually. This implies that it is possible to process more than twice as many samples using the same time, allowing the biologists to monitor wider areas and more frequently than doing the process manually.en_US
dc.languageengen_US
dc.relationEvaluación del impacto de microplásticos y contaminantes emergentes en las costas de la Macaronesiaen_US
dc.relationEstudio de la incorporación de microplásticos marinos a las redes tróficas en Canariasen_US
dc.relation.ispartofIEEE Accessen_US
dc.sourceIEEE Access [ISSN 2169-3536], v. 8, p. 25249 - 25261en_US
dc.subject120304 Inteligencia artificialen_US
dc.subject330811 Control de la contaminación del aguaen_US
dc.subject.otherComputer visionen_US
dc.subject.otherDeep learningen_US
dc.subject.otherMicroplastics classificationen_US
dc.titleSMACC: a system for microplastics automatic counting and classificationen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/ACCESS.2020.2970498en_US
dc.identifier.scopus85079668483-
dc.contributor.authorscopusid15042453800-
dc.contributor.authorscopusid57198776493-
dc.contributor.authorscopusid57215011409-
dc.contributor.authorscopusid6508106114-
dc.contributor.authorscopusid55189627500-
dc.contributor.authorscopusid57214883087-
dc.contributor.authorscopusid7401734371-
dc.contributor.authorscopusid57193161519-
dc.description.lastpage25261en_US
dc.description.firstpage25249en_US
dc.relation.volume8en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.identifier.ulpgces
dc.description.sjr0,587
dc.description.jcr3,367
dc.description.sjrqQ1
dc.description.jcrqQ2
dc.description.scieSCIE
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.project.principalinvestigatorGómez Cabrera, María Milagrosa-
crisitem.project.principalinvestigatorHerrera Ulibarri, Alicia Andrea-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR ECOAQUA: Ecofisiología de Organismos Marinos-
crisitem.author.deptIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.deptGIR ECOAQUA: Ecofisiología de Organismos Marinos-
crisitem.author.deptIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.deptDepartamento de Biología-
crisitem.author.deptGIR ECOAQUA: Ecofisiología de Organismos Marinos-
crisitem.author.deptIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.deptDepartamento de Biología-
crisitem.author.orcid0000-0002-2834-2067-
crisitem.author.orcid0000-0002-8673-2725-
crisitem.author.orcid0000-0002-7676-2066-
crisitem.author.orcid0000-0002-7396-6493-
crisitem.author.orcid0000-0002-5538-6161-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.parentorgIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.parentorgIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.fullNameLorenzo Navarro, José Javier-
crisitem.author.fullNameCastrillón Santana, Modesto Fernando-
crisitem.author.fullNameMartinez Sanchez,Ico-
crisitem.author.fullNameGómez Cabrera, María Milagrosa-
crisitem.author.fullNameHerrera Ulibarri, Alicia Andrea-
Colección:Artículos
miniatura
pdf
Adobe PDF (1,79 MB)
Vista resumida

Citas SCOPUSTM   

42
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

40
actualizado el 17-nov-2024

Visitas

149
actualizado el 09-mar-2024

Descargas

399
actualizado el 09-mar-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.