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ABSTRACT The management of plastic debris is a serious issue due to its durability. Unfortunately, million
tons of plastic end up in the sea becoming one of the biggest current environmental problems. One way to
monitor the amount of plastic in beaches is to collect samples and visually count and sort the plastic particles
present in them. This is a very time-consuming task. In this work, we present a Computer Vision-based
system which is able to automatically count and classify microplastic particles (1-5 mm) into five different
visual classes. After cleaning a collected sample in the lab, the proposed system makes use of a pair of its
images with different characteristics. The procedure includes a segmentation step, which is based on the
Sauvola thresholding method, followed by a feature extraction and classification step. Different features and
classifiers are evaluated as well as a deep learning approach. The system is tested on 12 different beach
samples with a total of 2507 microplastic particles. The particles of each sample were manually counted and
sorted by an expert. This data represents the ground truth, which is compared later with the results of the
automatic processing proposals to evaluate their accuracy. The difference in the number of particles is 34
(1.4%) and the error in their classification is less than 4% for all types except for the line shapes particles.
These results are obtained in less than half of the time needed by the human expert doing the same task
manually. This implies that it is possible to process more than twice as many samples using the same time,
allowing the biologists to monitor wider areas and more frequently than doing the process manually.

INDEX TERMS Computer vision, deep learning, microplastics classification.

I. INTRODUCTION
Nowadays, the problem of plastic pollution is of great global
concern. Specifically, microplastics - plastics smaller than
5 mm in size - pose a risk to marine organisms because
they can be ingested and transferred through the marine
food chains [1], [2]. This fact has been confirmed by a
research conducted by the Polytechnic University of Marche
and the Institute of Marine Sciences of the CNR of Genoa
that discovered the presence of plastic particles in 25-30%
of the Tyrrhenian Sea’s catch (Liguria, Tuscany, Lazio and
Campania).

These microplastics have associated chemical contami-
nants and the effects they may have on organisms are not yet

The associate editor coordinating the review of this manuscript and

approving it for publication was Victor Sanchez .

clearly known [1], [3]–[5], receiving growing interest from
the scientific community due to the exceptionality of the
issue. This problem has also been the object of attention of
international institutions such as the European Union that is
establishing criteria, methodological standards, and specifi-
cations for assessing and monitoring the environmental status
of its marine waters. This also includes the effect of marine
litter, and particularly of microplastics [6], [7]. In particular,
there is a need to establish protocols and common sam-
plingmethodologies to facilitate themonitoring ofmicroplas-
tics in marine and freshwater ecosystems as well as in
biota [8].

Regarding the monitoring of microplastics, one of the main
problems is that there are few long-term studies on its tempo-
ral variability to understand the evolution of this type of pollu-
tion over the years. This is mainly due to the demand in terms
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of time and resources involved in collecting samples and
processing them in the laboratory. In sediment studies,
the most common identification technique is the visual count-
ing and sorting under a stereomicroscope, which is based
on color, size, brightness, and morphology of the parti-
cles [9]–[11]. In the case of samples from beaches where
the number of particles is high, identifying polymers by
Fourier-transform infrared spectroscopy (FTIR) or Raman
spectroscopy is a time-consuming task that may exceed the
objectives of the study.

At present, there are automatic image analysis-based iden-
tification methods that could be very useful when counting,
classifying, and measuring some types of particles. In the
study of zooplankton several software applications have
been used successfully [12], [13], including ZooImage [14],
Zooprocess and Plankton Identifier (PkID) [15], and more
recently EcoTaxa [16]. Most of them are based on taking
images of the sample, either by specific equipment (ZooScan
or FlowCam) or by a high-resolution scanner. The image
is taken in transparent mode, which allows separating the
organisms from the background and obtaining the individual
images of each organism (vignettes). From these vignettes,
some relevant features are extracted (area, perimeter, width,
length, etc.) and finally, based on these characteristics and
a related classifier, the software identifies the taxa. These
applications have been used for the quantification and mea-
surement of microplastics too [17]–[20]. However, they are
not useful for classification. When scanning the sample in
transparent mode, important information is lost, such as the
color of the particles, making it impossible to differentiate
plastic particles from organic matter.

Given these antecedents, the objective of the present work
is to start from existing image analysis software for particle
identification and to develop a specific program to iden-
tify microplastics in beach samples, using other character-
istics besides the shape, such as the color and the texture.
In more detail, the proposal presented here aims at speed-
ing up the quantification and classification of microplastic
particles using computer vision and machine learning tech-
niques. The main contributions of the paper can be summa-
rized as: 1) the automatic segmentation and quantification
of microplastic particles in standard RGB images, 2) the
automatic classification of the particles into five types of
interest, and 3) the evaluation of different machine learning
approaches.

II. RELATED WORK
Although some solutions have been proposed for macroplas-
tics quantification [21]–[24], none of them are adequate for
microplastics, due to the evident difference in size. As pointed
out by the survey in [25], the quantification of microplas-
tics in sediments requires their preliminary extraction and
manual processing. Once the microplastics sample has been
collected, microplastics material must be separated from
all the other material before proceeding to the identifica-
tion of particles [26]. This is a completely different sce-

nario, compared to macroplastics quantification. The lat-
ter requires direct manual intervention for a precise debris
categorization. In particular, the quantification and classi-
fication of microplastics debris are required to later inte-
grate the resultant quantification and classification data. This
allows estimating and modeling their distribution, and finally
evidencing their effects [27]–[29].

It is clear that the identification/screening step requires a
time-consuming effort of highly qualified researchers, whose
time could be better applied to other tasks. The integra-
tion of automatic or semi-automatic tools aims at reducing
the required sample processing time, as already pointed out
by [30]. Most studies accomplishing this task have focused
on small microplastics (20µm − 1 mm), i.e., with a much
smaller size than those that are the object of the proposal
of this paper. Recently, these microplastic particles have
been automatically detected and quantified using Nile Red
(NR), Raman and Fourier Transform Infrared Spectroscopy
(FTIR) [29]–[31]. The emphasis is to register particles that
are not easily visible to the human eye. The work by [32]
points out the errors present when eye counting particles
below 1 mm. Additionally, the mentioned studies identify
the precise composition of the plastic material present in
samples. For instance, FTIR spectroscopy is used by [29]
to identify the composition of microplastic particles. Focal
Plane Array detectors (FPA) and FTIRmicroscopy, combined
with a commercial image analysis software, are used by [31].
The presence of microplastics in an abiotic product, namely
table sea salt, is studied by [33]. The authors developed
an approach that reproduces eye counting results capturing
micro-FT-NIR images and identifying Polyethylene Tereph-
thalate (PET)microplastics using spectral similaritymethods.
The main drawbacks of IR-microscopy procedure are its low
speed, high cost, and poor spectral resolution. As an alterna-
tive, fluorescence properties have been considered to high-
light specific objects. The work by [30] proposes suspending
the sediment in 5 ml of water, counting down to a few µm
particles by detecting fluorescent emission. The method uses
simple photography through an orange filter with automatic
image analysis. The authors compare different dyes report-
ing the adoption of NR. The latter additionally provides the
possibility of plastic categorization, as the NR fluorescence
emission spectrum shifts depending on the polarity of its
environment. Their results are competitive compared to IR-
microscopy. Also [32] makes use of NR to quantify small
particles of polyethylene, polypropylene, polystyrene, and
nylon-6 particle.

Microplastic particles larger than 1 mm have attracted less
attention in the literature. Certainly, their analysis may be car-
ried out by visual inspection, but again its automation would
lead to faster sample processing. In our previous work [34],
we analyzed samples extracted with a 1 mm mesh bag, i.e.
visible to the human eye, using standard RGB images to
extract their geometric features. These are used to classify
microplastic particles into four debris categories. Given an
experimental setup including 844 particles, the evaluation

25250 VOLUME 8, 2020



J. Lorenzo-Navarro et al.: SMACC

reports an accuracy of over 96.46% with Random Forest
classifier.

A recent innovative approach addresses the characteri-
zation of microplastic litter from oceans by hyperspectral
imaging [35]. Floating microplastic particles are collected
by surface trawling nets for plankton, and then identified
in three classes, namely polyethylene (PE), polypropylene
(PP), and polystyrene (PS), using morphological and mor-
phometric features. As reported by [36], not all authors
confirm the composition of the particles using spectro-
scopic techniques (only 57% in sediments) and, in gen-
eral, use only a subset of particles. Given the need to find
alternatives to the initial visual inspection with the naked
eye, we propose the SMACC software to count and clas-
sify particles. This is not intended to confirm plastic poly-
mers, for this task would require the use of spectroscopy
techniques.

As anticipated in the introduction, some researchers have
already tried to adapt some image processing techniques
used for other tasks, such as zooplankton analysis, to the
microplastic classification. The traditional execution of this
task entails the same sample properties, and the time-
consuming need to count and classify the different species
that appear in a sample. In zooplankton analysis, the ZooIm-
age tool [14] is employed to automatically classify zooplank-
ton species [37]–[39]. ZooImage is an open-source solution
that extracts different statistics from the zooplankton sam-
ples, such as abundances, total and partial size spectra or
biomasses, etc. According to [12], an accuracy over 70% can
be reached, but it depends on the species and their sizes.
ZooScan with ZooProcess and Plankton Identifier (PkID)
software [15] is another system designed for the same pur-
pose reporting a similar accuracy around 75%. Zooplankton
analysis is certainly a quite similar task to the one addressed
here, but not necessarily the same features will be easily
transferred to the problem at hand. For example, color can
be a very important cue for microplastics classification, and
different kinds of particles can be characterized by a pecu-
liar texture. Therefore, this paper presents a more tailored
proposal.

Recently, image analysis has started receiving attention in
microplastics characterization tasks. In [10], Mukhanov et al.
compute three shape descriptors (Feret’s diameter, circularity,
and area) with the ImageJ software to semi-automatically
classify the microplastics particles into four classes: rounded,
irregular, elongated and fiber. Gauci et al. [11] analyze the
microplastics particles extracted from four beaches in Malta
usingMatlab software. For each particle, three descriptors are
obtained: size, roughness, and color. The size is computed
using an ellipse fitting technique and then using the major
and minor axis. The authors define the roughness as the ratio
between the difference of the particle and fitted ellipse areas
and the ellipse area. The color descriptor is obtained as the
closest color in the RGB space to a set of 10 predefined colors.
In both works, the authors acquire the images using a flatbed
scanner.

FIGURE 1. Image of a 50cm × 50cm area of interest selected in a Canary
Island beach.

III. MATERIAL AND METHODS
A. METHODOLOGY FOR SAMPLE EXTRACTION AND
PREPARATION
There is no unique standardized lab protocol for the quan-
tification and identification of microplastic particles, and
none of the followed ones exhibits a better performance than
the other [40]. Nonetheless, all of them share the need for
manually counting and identifying the microplastics in a
sample. This is certainly a time-consuming process requiring
the attention of specialized personnel. Therefore, the devel-
opment of automatic approaches achieving similar to manual,
i.e. human, performance would suggest their validity.

Regarding the sample collection, when a net is used, the net
mesh size determines the minimum size of the microplastics
collected, and the information that may be extracted. Even
though there is a need to define a common protocol for sam-
pling, extraction, and quantification of the microplastics par-
ticles [25], [41], our aim is rather to devise amethodology that
integrates an automatic computer vision-based approach in
the process, which is suited for different protocols. The inves-
tigated system does not only count the number of microplas-
tics particles but also classifies them into different categories,
reducing the time needed in the process.

Before describing the proposed computer vision-based
processing of samples, it is worth preliminarily and briefly
outlining the specific collectionmethodology adopted for this
work. In the Canary Islands Archipelago, the standardized
methodology in use follows the manual Guidance on Mon-
itoring of Marine Litter in European Seas [7], slightly modi-
fied in [42]. The overall procedure for the sample preparation
entails a number of steps to analyze the larger fraction of
microplastic particles (1 − 5 mm). It starts from the selec-
tion of regions (quadrants) of interest on a beach, as shown
in Figure 1, and achieves the final result of separating the
particles of interest (see Figure 3). The procedure steps are
summarized in the following.

The samples are collected in a 50cm × 50cm quadrant at
a high tide line (Figure 1). The first centimeter of sand is
gathered and placed in a net with a 1 mm mesh opening. The
nets are rinsed with water to remove the sand, and in this way,
only microplastics and remains of organic matter (leaves,
algae, etc.) greater than 1mm are collected [42]. Samples
may contain different types of organic remains such as shells,
therefore it may be necessary to add a density separation
step before processing them. Several authors propose the
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FIGURE 2. Sample of microplastics collected from a beach of Canary
Islands after cleaning in the lab.

FIGURE 3. From left to right: a) pellet, b) fragment, c) line, d) tar and e)
organic particles.

separation with a high-density salt solution: sodium chloride
(NaCl), sodium iodide (NaI) and zinc chloride (ZnCl2) [43];
furthermore, if many organic plant residues are present, a pre-
liminary separation with 96% ethanol can be carried out [42].
The sample is dried and sieved to separate the fractions
of 1-5mm (microplastics) (see Figure 2) and 5-25mm (meso-
plastics). Finally, the microplastics are weighted and scanned
(see Section III-B).
According to the studies performed in our geographical

context, namely Canary Islands, five types of relevant par-
ticles are present in coastal areas [44], which are briefly
described:
• Pellet. They correspond to small beads of primary
microplastics (Figure 3a).

• Fragment. They correspond to small fragments derived
from the breakdown of larger plastic debris (Figure 3b).

• Line. They correspond to small segments of fish lines or
nets (Figure 3c).

• Tar. Although this type does not correspond to a plastic
polymer, it represents an important fraction of marine
debris in the Canary Islands. This is likely due to ships
that discharge bunker oil in the sea, or to old oil spills
deposited on rocks and fragmented by the action of
sea waves. The result is represented by small solid tar
fragments (Figure 3d).

• Organic. This is not a plastic material either, but it
is often present in collected samples though not being
sand. Normally it corresponds to small fragments of
wood, bones or shells (Figure 3e).

B. IMAGE ACQUISITION AND SEGMENTATION
Automatic image analysis is carried out on a per-sample
basis. Once the sample has been processed as described
above, to isolate particles in the range 1-5 mm, a scanner
is used to capture the particles after distributing them over
the scan plate so as to avoid occlusions. Images are captured
with an Epson Perfection V800, using VueScan as scan-
ning software. The resulting image resolution ranges from

FIGURE 4. Background detail with creases and a line microplastic
particle.

FIGURE 5. a) Transparency and b) RGB color images corresponding to the
same microplastics sample.

approximately 4800 × 6900 pixels to 9700 × 13800 pixels,
depending on the scanner configuration (at least 600 dpi is
recommended). This resolution avoids the loss of details in
the particles, but, at the same time, may highlight imperfec-
tions in the scanner background. This may introduce some
level of noise or appearing artifacts, that could be confused
with some types of microplastics, in particular with the lines.
Figure 4 shows an example of this kind of problem.

For each sample, two images are acquired: one in trans-
parency mode (backlight illumination) and the second one
in reflective mode (RGB color). Figure 5 shows the pair of
images from an example sample. The need for two images
of the same sample is due to the translucent nature of some
type of polymer that hinders the segmentation of the particles
using exclusively the reflective mode.

The observation of the transparency image in Figure 5a
suggests that, given the clear scanner background, parti-
cles are in most cases darker. This circumstance may be
opportunistically exploited for a thresholding operation [45]
to locate the connected components (blobs) belonging to
microplastic particle candidates. However, the result of the
thresholding operation can be influenced by the character-
istics of different kinds of particles. Existing thresholding
techniques may use a single fixed threshold over the whole
image (global methods), or an adaptive threshold if its value
is computed for each pixel based on local statistics (adaptive
methods). Among the global methods, the one by Otsu [46]
has been extensively used, providing good performance when
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FIGURE 6. The results of a) Otsu’s and b) Sauvola and Pietikäinen’s
methods in fishing line segmentation.

regions are not linear. In our scenario, one particular type
of microplastic particles come from the breakdown of fish-
ing lines or nets and their shape is very linear. Therefore,
the method by Otsu is prone to dividing the processed linear
blobs into several parts, therefore achieving bad results. For
that reason, the adaptive method by Sauvola and Pietikäi-
nen [47] is adopted. The results from the two approaches are
compared in Figure 6, where the particle labeled as93-LINE
in Figure 6b (obtained by Sauvola and Pietikäinen’s method),
appears divided into two segments in Figure 6a (obtained
by Otsu’s method): 71-LINE and 74-LINE. As a conse-
quence of such preliminary tests, the method by Sauvola and
Pietikäinen was chosen for the prototype application because
its performance is less affected by the particular shape of the
objects to segment.

Once the segmentation of a transparency image is com-
pleted, a set of geometrical features can be extracted from the
resulting blobs. However, the color information fades in grey
levels in the transparency image, therefore cannot be fully
exploited. Thus, the additional color information of the parti-
cles is obtained from the corresponding color image acquired
in reflective mode (Figure 5b). In principle, the segmentation
of the transparency image could be mapped onto the corre-
sponding color image and identify the same blobs. However,
the area of the image occupied by the sample is interactively
cropped by the researcher during each scanning. For this
reason, there is a usually small misalignment between the
corresponding transparency and color images. The alignment
of two images has been extensively studied in the Computer
Vision community as image registration. Briefly, this task
comprises four steps: feature detection, feature matching,
transform model estimation, and image resampling. To cor-
rect themisalignment, a planar homography transformation is
carried out. This operation implies finding the corresponding
pixels in both images to compute the 3 × 3 transformation
matrix. In our scenario, the feature detection has been carried
out using the SURF descriptor (Speeded Up Robust Feature
- [48]), which has a similar performance to SIFT descriptor
(Scale-invariant feature transform). Due to the high number
of features detected, many matches can be found, thus the
RANSAC algorithm is used [49] to reduce the mismatches
among the initial candidates. Figure 7 and Figure 8 help
appreciating the effect of the alignment operation. The first
one shows the transparency image segmentationmapped onto

FIGURE 7. Detail of misaligned color image.

FIGURE 8. Detail of aligned color images.

the color image without alignment, while the second one pro-
vides the same detail after applying the described alignment
process. In the latter case, the results of the transparency
image segmentation correspond with the same particles in the
color image.

C. FEATURE EXTRACTION AND CLASSIFICATION
The features extracted after the segmentation process can be
grouped into three categories: geometric, color and texture
features. Geometric features are extracted from the trans-
parency image while the rest come from the RGB color
image. The geometric features that are used in this proposal
are related to the blob/particle size and shape and include the
following ones.
• Area of the blob in pixels.
• Perimeter of the blob in pixels.
• Compactness of the blob, computed as the ratio between
the square of the perimeter and the area.

• Ratio between the area of the blob and its bounding box.
• Ratio between the width and the height of the blob
bounding box.

• Ratio between the major and minor axis of the fitted
ellipse.

• Ratio between the major and minor radius defined,
respectively, as the distance from the furthest and closest
pixel of the contour to the centroid of the blob.

The color features include the following ones.
• Mean and variance of the RGB (Red, Green, Blue)
components of the blob pixels.

• Mean and variance of the HSV (Hue, Saturation, Value)
components of the blob pixels.
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Local Binary Pattern (LBP) [50] has been chosen to extract
features related to texture, given its proven robustness and dis-
criminant capability in several computer vision tasks. Though
there are a wide number of variants described in the literature,
for this problem the original LBP(8, 1) definition has been
used. It computes a value between 0 and 255 for each pixel
of the microplastic particle blob. This value is the decimal
number corresponding to the 8-bits binary string that codes
the relations between the grey level of the pixel and that of
each of its 8 ordered neighbors in a 3× 3 window (a 0 if the
value of the pixel is higher than its neighbor, a 1 otherwise).
The histogram of the 256 codes is used as the texture feature.
In summary, the whole set of features in the blob/particle vec-
tor, combining geometric, color and texture features, contains
275 elements.

After extracting the particle features, the next step is to
classify each particle in the sample into one of the five classes
previously defined: pellet, fragment, line, tar or organic.
Different classifiers have been tested before finding the
final solution. The considered baseline classifiers are the
following:
• K Nearest-Neighbor (KNN). This method belongs to
the case-based classifiers [51] which first store all the
training instances. Later, the classification of a new
instance is performed considering the K nearest training
instances to it. The class assigned to the test instance is
given by a voting strategy among the K nearest training
instances. Different values of K, distancemeasures to get
the nearest neighbors, and voting strategies have been
proposed in the literature.

• C4.5. This classifier is a decision tree [52] which is
built in a top-down manner. Training instances are
divided in each node according to the best discrimi-
nating attribute of the subset of training instances that
correspond to the node. The stopping criterion is when
all instances that correspond to a node belong to the
same class or the best split of the node does not sur-
pass a fixed Chi-square significant threshold. After the
growing stage, a pruning phase is implemented to avoid
overfitting.

• Random Forest (RF). This classifier is made up of sev-
eral decision trees that are built using subsets of the train-
ing instances randomly selected with replacement [53].
In the growing stage of each tree, in each node a set
of randomly selected attributes is considered, therefore
obtaining uncorrelated trees. To classify a new instance,
after feeding it into all the trees, a majority strategy is
used to assign the instance to a class.

• Support Vector Machine (SVM). This classifier obtains
the hyperplanes that separate the training instances of
different classes minimizing the expected error [54].
The support vectors are those instances that define
the hyperplanes. For non linearly separable classes,
the original space is transformed using kernels, where
themost frequently used are polynomial and radial based
functions (RBF).

FIGURE 9. Three-level cascade classifier.

Avisual analysis of the particle shapes reveals that they can
roughly form three different groups. The first group includes
lines, given their linear shape which is remarkably different
from all the other particles, as can be seen in Figure 3c.
The second group comprises pellets, which can be discrim-
inated quite well due to their rounded shape. Finally, tar,
organics, and fragments present irregular shapes but different
color/texture appearance, so that they are grouped and require
to be processed by a higher number of features. According to
this, the proposed solution implements an ensemble classifier,
specifically a three-level cascade classifier with the structure
shown in Figure 9. In the first level, making use of only
geometrical features, particles are classified into lines and
others. In the second level, again using only geometrical
features, the classifier divides the particles into pellets and
the rest. Finally, a classifier that distinguishes all the features
(geometric, color and texture) groups the particles into the
remaining classes: fragments, organic and tar. The aim of a
first set of experiments, that will be presented in the next
section, has been to determine the best classifier for each
level, in order to maximize the final accuracy.

The recent success of Deep Learning (DL) approaches,
especially Convolutional Neural Networks (CNN), in sev-
eral challenging object classification problems [55]–[58],
suggests the evaluation of its application in microplastics
classification. However, due to the entailed computational
requirements, this approach has not yet been integrated into
the current release of the implemented software. In addition,
the lack of thousands of labeled particle instances hinders a
complete training process, restricting the application of DL
to transfer learning techniques. In this context, the VGG-16
network [56] has been used as the base net for a second set
of experiments. It is a CNN whose configuration comprises
two blocks of two convolutional layers followed by a max-
pool layer, three blocks of three convolutional layers followed
by a max-pool layer, and three fully-connected layers. All
the convolutional layers have a Rectified Linear Unit (ReLU)
activation function.

The VGG-16 has been modified to be used in our
microplastics classification task. First, input images have a
dimension of 132 × 132 pixels in RGB color instead of the
original 224×224 pixels. The dimension of the two first fully-
connected layers has been reduced to 128 and 64 respectively,
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TABLE 1. Number of particles per class in the training and test sets.

TABLE 2. Performance of classifiers using the complete set of features
(first four rows) and the cascade architecture (last row).

and a batch normalization layer [59] has been introduced after
each layer. The last layer has five outputs, corresponding to
the microplastic classes under consideration, with softmax
activation function. The previous fully-connected layers are
the only to be trained because the rest of the network will use
weights that had been pre-trained on ImageNet.

IV. RESULTS
To assess the validity of the proposed system, the first exper-
iments used five samples, each one containing only particles
of a single class previously classified by an expert. The
particles of each sample were divided into two groups, one
for training and the other for testing (Table 1). Thus the
experimental setup contains 10 samples, two for each particle
type.

For each sample, microplastic particles are segmented,
making use of the segmentation method introduced in
section III-B. After segmentation, the corresponding feature
vector of 275 elements is computed for each particle, describ-
ing the particle geometry, color, and texture as defined in
section III-C. The distribution of particles for each class in
the respective training and test sets is shown in Table 1.

In a first evaluation experiment, each single classifier
described in section III-C exploited all 275 features in a single
classification step, i.e., each input particle was assigned to
one of the five classes. The achieved results are summarized
in Table 2. No fusion of results was attempted. The best
average accuracy (over all the classes) of 88.3%was obtained
for the SVM classifier with RBF kernel setting up C= 15 and
gamma = 0.05. C and gamma hyperparameter values were
obtained using a cross-validation tuning process. In general,
it can be observed that both precision and recall values are
very similar, indicating a balanced behavior of the classifiers
for all the classes. Compared with the other classifiers, KNN
exhibits the worst performance due to the high dimensionality
of the problem with respect to the available training data.
A cross-validation tuning process was also used to set up the
number of neighbors (K = 5) for the KNN classifier. The
C4.5 decision tree is not so affected by the dimensionality,
because the method implicitly introduces a feature selection

phase in the building process. Random Forest, in spite of
being based on decision trees, is more affected by irrelevant
features than a single decision tree such as C4.5.

Finally, the very last row of Table 2 presents the results
obtained using the opportunistic design of the three-level cas-
cade classifier. According to the observations reported above,
this design divides the five-class classification problem into
two initial binary problems (line/others first and pellet/others
afterward), and a final three-class problem. As evidenced by
the results, this classifier yields the best performance with
an accuracy of 91.1%. The configuration of the cascade was
determined experimentally, by preliminary tests to identify
the best classifier at each level. The first classifier employs
an SVM linear to classify lines, and the second level relies on
a Random Forest with Relief feature selection [60] for pellets.
In these two first levels, only geometrical features are used,
as color and texture features are not relevant for the corre-
sponding tasks. As a matter of fact, both lines and pellets are
fully characterized by their shape features, that discriminate
them from all the others to a satisfying extent. The remaining
group includes three classes (fragments, tar and organic) and
is therefore much more variated. For this reason, several fac-
tors have to be taken into account at the same time. Therefore,
the last level makes use of the whole set of features, in order to
consider shape but to take also advantage of both the particle
color and of the texture information that LBP descriptor
captures. To avoid that the LBP descriptors, due to their high
dimensionality, can overwhelm the outcome from color and
geometrical features, a dimensionality reduction of the LBP
descriptor is carried out by Principal Component Analysis
(PCA), and the resulting principal components along with the
other features are the inputs to the Random Forest making
up the last stage of the cascade classifier. After projecting
the LBP descriptor using PCA, the resulting space has a
dimension corresponding to 7 principal components, which
explain more than 95% of the LBP descriptor total variance.

The influence of dimensionality is further explored test-
ing the use of geometric and color features only. Table 3
summarizes the results in this case, i.e., leaving out texture
features. The behavior of the SVM and C4.5 classifiers are
very similar to the scenario with the full set of features. On the
other hand, KNN and Random Forest increase their accuracy,
with the latter obtaining the best accuracy with 89.4%. This
improvement is due to the dimensionality reduction, which
decreases the influence of non-informative or redundant fea-
tures. As in the previous scenario, the respective method
hyperparameters, C = 15 and gamma = 0.05 for SVM and
K = 3 for KNN, were obtained with a cross-validation
tuning. However, the results are still below those obtained
by the cascade, thus testifying the suitability of the designed
solution.

It is also interesting to consider the confusion matri-
ces obtained over the test set by the single best "mono-
lithic" classifier, i.e., SVM as discussed above, and the
designed cascade. Figure 10 presents the normalized confu-
sion matrix for the SVM classifier with RBF kernel using all
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TABLE 3. Performance of classifiers using the geometrical and color
features.

FIGURE 10. SVM RBF kernel classifier confusion matrix.

FIGURE 11. Cascade classifier confusion matrix.

the features. Figure 11 shows the normalized confusion
matrix of the three-level cascade classifier: except for pellet,
the rest of the particles are very well classified (over 90% of
correct classification in all cases). The values on the diag-
onal, i.e., the correct recognition of particles, increase for
all classes, demonstrating that the proposed method is well
balanced and does not privilege any class. On the contrary,
being SVM the second-best in performance according to
results in Table 2, thematrix in Figure 10 points out a decrease
in accuracy more remarkable for line, pellet, and fragment
particles. As expected, fragments (and organic at a lower
extent) are those that create more confusion, due to very
different possible characteristics. However, such confusion
is reduced satisfyingly by the cascade. Lines are correctly
recognized by the cascade, so eliminating some confusion
by SVM, and also tar creates little problem, possibly due
to very specific color and texture characteristics. Strangely
enough, the worst results, though quite good, are obtained by
the pellet class. Not only does it achieve the lowest correct
recognition rate, but particles are often misclassified as frag-
ments. On the one hand, no other kind of confusion is made.

TABLE 4. Manually and automatically counting number of particles.

TABLE 5. Manual vs automatic classification results.

This demonstrates that the way lines, tar and organic classes
have been characterized makes them sufficiently different
from pellet. On the other hand, further investigation is
required to explain the confusion with fragments. Notwith-
standing the intuitive understanding, it seems that the circular
shape does not sufficiently characterize this kind of particles,
as well as for the other classes. However, pellets can be of
different colors and with a uniform texture, so that these
features would not be of much help. As a consequence, it is
necessary to better explore this issue.

Even though the CNN-based classifier is not integrated
into the current recognition pipeline, we designed an exper-
imental setup to roughly assess the possible improvement
of classification performance. A CNN requires an image as
input. For this reason, instead of computing features from
each segmented particle, the resulting segmentation bounding
boxes were used to crop the different particles from each class
image pair and use them as input. Unlike the other classifiers,
the CNN needs a larger number of instances to be trained,
even though only the fully-connected layers are going to be
trained (see sec. III-C). To solve this issue, a data augmenta-
tion process was carried out, entailing the rotation of each
particle cropped image by π/4, π/2 and 3π/4 clockwise,
and using both the original and its mirrored cropped image,
obtaining a total of 5960 particle images that were scaled to
132× 132 pixels. We use SGD with a learning rate of 10−6,
momentum of 0.9 and the batch size of 32. After that, a 10-CV
was carried out to get an estimation of the CNN performance.
The accuracy reaches 97.4% (precision= 97.5% and recall=
97.4%) which improves the results of the previous classifiers.
Even if the experimental setup is not completely equivalent,
this approach suggests a research line to be followed in the
near future.

The experiments presented up to now were carried out
with samples of only one class particle per sample. A further
experiment in real conditions was conducted using 12 mixed
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TABLE 6. Manual vs automatic classification results per class.

TABLE 7. Manual processing time.

samples of microplastics collected on a beach. To test the per-
formance of the proposed system the results obtained by an
expert (manual) and by SMACC (automatic) are compared.
In Table 4 the total number of particles detected is shown and
it can be observed that SMACC has an error of 1.4% in the
number of detected particles. This difference falls within the
acceptable margin for monitoring studies that try to establish
the evolution over time rather than obtaining a snapshot in
a moment. Table 5 presents the number of particles of each
type in the 12 samples detected by the expert (manual clas-
sification) and by SMACC (automatic classification). It can
be observed that the difference is very low except for the
line type; even with the organic particles the manual and
automatic classifications yield the same results. The nature of
the line particles as very thin regions of clear material makes
its segmentation more difficult dividing the same particles
into several ones. The disaggregated results for each sample
and class are shown in Table 6.
With respect to the time to process each sample,

Table 7 and 8 show the time devoted to each stage of the
counting and classification process. The values shown in the
table correspond to actual timesmeasuredwith a chronometer
by the expert who carried out the process. Overall, the auto-
matic process is done in less than half of the time consumed
by the expert. As pointed out in the introduction, the counting
and classifying process is a very time-consuming one and
this is confirmed in the tables: the manual process takes
20:24 minutes on average against the 00:35 minutes of the
automatic process.

V. DISCUSSION
According to the achieved results, the use of a single classifier
to discriminate among the five classes provides accuracy
close to 90% for all classes. However, it is evident that
there is a negative influence of the feature vector length,
as texture features seem to negatively affect some classifiers.
Taking advantage of the different particle nature, it proves
more suitable to apply a multilayer cascade classifier. This
simplifies the problem iteratively before reaching the last
layer classifier, that deals with only three classes. This goal
is achieved by taking into account the peculiar characteristics
of the different particle classes. Given the experimental setup,
the use of a cascade strategy has proven to provide a more
robust classifier. This approachmakes use of fewer features in
the first two levels, i.e., the geometrical ones only, to classify
the easy particles: lines and pellets. The remaining three
classes are analyzed in the last level with the whole set of
features, which includes color and texture information. This
design has the additional advantages to make use of simpler
classifiers for easier differentiated particles, making also the
process quicker, and to employ a more complex classifier
only for harder classes.

The experimental evaluation has also included a pre-
liminary evaluation of a deep learning approach. Even
if the number of annotated instances is reduced, and a
data augmentation step was required, the achieved accu-
racy reflects a remarkable improvement. The integration of
deep learning imposes higher computational requirements,
needing a larger experimental setup to fairly compare the
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TABLE 8. Automatic processing time.

different alternatives. In any case, this option offers also fur-
ther possibilities, as it may be adopted as a feature extractor,
to combine the additional learned features with those already
considered, i.e., geometrical, color and texture. In this sense,
in the near future we plan to consider the combination of
extracted features and hand-crafted ones, which have already
provided us excellent results in other application fields, as in
the case related to soft biometrics [61], [62].

Compared with a human expert, SMACC has achieved
very similar results, which can be obtained in half the time
consumed by the expert for the same task. Most of the errors
are related to line particles because, despite using the Sauvola
thresholding method, some of the line particles are divided
into multiple blobs, resulting in an overestimation of this type
of particles. With respect to the automatic processing time,
it can be observed that the bottleneck is in the transparency
scanning that on average consumes 4:59 minutes out of total
process duration (9:52 minutes), so any improvement in this
aspect will have a positive impact in the total reduction of the
processing time.

VI. CONCLUSION
In this work, we have focused on the design of a software util-
ity to automatically classify microplastic particles (< 5 mm).
The aim is to provide researchers with a tool to speed up
microplastics quantification and classification procedures.
The use of Java as a programming language allows using the
prototype application on different platforms like Windows,
Linux, or MacOS.

We have collected an evaluation dataset taking into account
the five classes of particles present in the Canary Islands. This
dataset served to explore different features and classification
alternatives. The reported best accuracy, 91%, is achieved
using a cascade classifier which integrates geometrical, color,
and texture features. The study also includes preliminary
results adapting a deep learning-based approach, with very
promising results. However, further efforts are needed to
create a larger dataset, which is certainly an expensive task.
In any case, as our intention is to make the software available
to the research community, a collateral effect may be the
creation of a collaborative larger annotated dataset.

In a real scenario, the proposed system has proved to yield
similar results to a human expert and it is able to carry out the

task in less than half of the expert time. A further advantage
is that the system does not suffer from errors due to fatigue.
One element to improve in SMACC is the image acquisition
stage because the transparency scanning takes almost 50% of
the overall processing time.

In summary, computer vision techniques serve to speed
up the quantification, characterization, and classification of
microplastic particles and can provide a good contribution
to this increasingly important field. SMACC software can be
found at http://mozart.dis.ulpgc.es/smacc for downloading.
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