Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/70178
Campo DC Valoridioma
dc.contributor.authorMendonça, Fábioen_US
dc.contributor.authorMostafa, Sheikh Shanawazen_US
dc.contributor.authorMorgado-Dias, Fernandoen_US
dc.contributor.authorRavelo-García, Antonio G.en_US
dc.date.accessioned2020-02-06T07:16:59Z-
dc.date.available2020-02-06T07:16:59Z-
dc.date.issued2020en_US
dc.identifier.issn0169-2607en_US
dc.identifier.otherScopus-
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/70178-
dc.description.abstractBackground: Multiple methods have been developed to assess what happens between and within time series. In a particular type of these series, the previous values of the currently observed series are contingent on the lagged values of another series. These cases can commonly be addressed by regression. However, a model selection criteria should be employed to evaluate the compromise between the amount of information provided and the model complexity. This is the basis for the development of the Matrix of Lags (MoL), a tool to study dependent time series. Methods: For each input, multiple regressions were applied to produce a model for each lag and a model selection criterion identifies the lags that will populate an auxiliary matrix. Afterwards, the energy of the lags (that are in the auxiliary matrix) was used to define a row of the MoL. Therefore, each input corresponds to a row of the MoL. To test the proposed tool, the heart rate variability and the electrocardiogram derived respiration were employed to perform the indirect estimation of the electroencephalography cyclic alternating pattern (CAP) cycles. Therefore, a support vector machine was fed with the MoL to perform the CAP cycle classification for each input signal. Multiple tests were carried out to further examine the proposed tool, including the effect of balancing the datasets, application of other regression methods and employment of two feature section models. The first was based on sequential backward selection while the second examined characteristics of a return map. Results: The best performance of the subject independent model was attained by feeding the lags, selected by sequential backward selection, to a support vector machine, achieving an average accuracy, sensitivity, specificity and area under the receiver operating characteristic curve of, respectively, 77%, 71%, 82% and 0.77. Conclusions: The developed model allows to perform a measurement of a characteristic marker of sleep instability (the CAP cycle) and the results are in the upper bound of the specialist agreement range with visual analysis. Thus, the developed method could possibly be used for clinical diagnosis.en_US
dc.languageengen_US
dc.relation.ispartofComputer Methods and Programs in Biomedicineen_US
dc.sourceComputer Methods and Programs in Biomedicine [ISSN 0169-2607], n. 189en_US
dc.subject3314 Tecnología médicaen_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherCAPen_US
dc.subject.otherECGen_US
dc.subject.otherMatrix Of Lagsen_US
dc.subject.otherSleep Qualityen_US
dc.subject.otherTime Series Analysisen_US
dc.titleMatrix of Lags: A tool for analysis of multiple dependent time series applied for CAP scoringen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.cmpb.2020.105314en_US
dc.identifier.scopus85078198412-
dc.identifier.isi000533562800010-
dc.contributor.authorscopusid57195946416-
dc.contributor.authorscopusid55489640900-
dc.contributor.authorscopusid57200602527-
dc.contributor.authorscopusid9634135600-
dc.identifier.eissn1872-7565-
dc.relation.volume189en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.description.numberofpages10en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Mendonca, F-
dc.contributor.wosstandardWOS:Mostafa, SS-
dc.contributor.wosstandardWOS:Morgado-Dias, F-
dc.contributor.wosstandardWOS:Ravelo-Garcia, AG-
dc.date.coverdateJunio 2020en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,924
dc.description.jcr5,428
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-8512-965X-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameRavelo García, Antonio Gabriel-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

10
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

10
actualizado el 17-nov-2024

Visitas

148
actualizado el 19-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.