Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/70136
DC FieldValueLanguage
dc.contributor.authorSteinmetzer, Tobiasen_US
dc.contributor.authorMaasch, Micheleen_US
dc.contributor.authorBönninger, Ingriden_US
dc.contributor.authorTravieso González, Carlos Manuelen_US
dc.date.accessioned2020-02-05T12:52:37Z-
dc.date.available2020-02-05T12:52:37Z-
dc.date.issued2019en_US
dc.identifier.issn2079-9292en_US
dc.identifier.otherScopus-
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/70136-
dc.description.abstractDue to increasing life expectancy, the number of age-related diseases with motor dysfunctions (MD) such as Parkinson’s disease (PD) is also increasing. The assessment of MD is visual and therefore subjective. For this reason, many researchers are working on an objective evaluation. Most of the research on gait analysis deals with the analysis of leg movement. The analysis of arm movement is also important for the assessment of gait disorders. This work deals with the analysis of the arm swing by using wearable inertial sensors. A total of 250 records of 39 different subjects were used for this task. Fifteen subjects of this group had motor dysfunctions (MD). The subjects had to perform the standardized Timed Up and Go (TUG) test to ensure that the recordings were comparable. The data were classified by using the wavelet transformation, a convolutional neural network (CNN), and weight voting. During the classification, single signals, as well as signal combinations were observed. We were able to detect MD with an accuracy of 93.4% by using the wavelet transformation and a three-layer CNN architecture.en_US
dc.languageengen_US
dc.relation.ispartofElectronics (Switzerland)en_US
dc.sourceElectronics (Switzerland) [ISSN 2079-9292], v. 8 (12), p. 1-15en_US
dc.subject3314 Tecnología médicaen_US
dc.subject.otherGait Analysisen_US
dc.subject.otherInertial Sensorsen_US
dc.subject.otherMachine Learningen_US
dc.subject.otherParkinson’S Diseaseen_US
dc.subject.otherWavelet Transformationen_US
dc.subject.otherWearable Sensorsen_US
dc.titleAnalysis and classification of motor dysfunctions in arm swing in parkinson’s diseaseen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/electronics8121471en_US
dc.identifier.scopus85076025107-
dc.identifier.isi000506678200097-
dc.contributor.authorscopusid57204115368-
dc.contributor.authorscopusid57212143523-
dc.contributor.authorscopusid56395430400-
dc.contributor.authorscopusid6602376272-
dc.identifier.eissn2079-9292-
dc.identifier.issue12-
dc.relation.volume8en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid34756291-
dc.contributor.daisngid34775863-
dc.contributor.daisngid7765108-
dc.contributor.daisngid265761-
dc.description.numberofpages15en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Steinmetzer, T-
dc.contributor.wosstandardWOS:Maasch, M-
dc.contributor.wosstandardWOS:Bonninger, I-
dc.contributor.wosstandardWOS:Travieso, CM-
dc.date.coverdateDiciembre 2019en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,303
dc.description.jcr2,412
dc.description.sjrqQ2
dc.description.jcrqQ2
dc.description.scieSCIE
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameTravieso González, Carlos Manuel-
Appears in Collections:Artículos
Thumbnail
Adobe PDF (4,74 MB)
Show simple item record

SCOPUSTM   
Citations

9
checked on Nov 24, 2024

WEB OF SCIENCETM
Citations

8
checked on Nov 24, 2024

Page view(s)

101
checked on Mar 9, 2024

Download(s)

53
checked on Mar 9, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.