Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/70066
Título: A Novel Implementation of a Hyperspectral Anomaly Detection Algorithm for Real Time Applications with Pushbroom Sensors
Autores/as: Horstrand Andaluz, Pablo Sebastian 
Lopez, Sebastian 
Lopez, Jose Fco 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Anomaly Detection
Push-Broom Sensors
Real-Time
Fecha de publicación: 2018
Publicación seriada: Workshop On Hyperspectral Image And Signal Processing, Evolution In Remote Sensing
Conferencia: 9th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, WHISPERS 2018 
Resumen: Anomaly detection is an increasingly important task when dealing with hyperspectral images in order to distinguish rare objects whose spectral characteristics substantially deviates from those of the neighboring materials. In this paper, a novel technique for accurate detection of anomalies in hyperspectral images is introduced. One of the main features of this method is its ability to process pushbroom data on-the-fly (i.e., line-by-line), being clearly suitable for real time applications in which memory resources are restricted as there is no need to store the whole hypercube. Diverse quality metrics have been applied on testing with real and synthetic hyperspectral data sets in order to compare the accuracy of the proposed algorithm over the state-of-the-art, showing the goodness of our proposal.
URI: http://hdl.handle.net/10553/70066
ISBN: 9781728115818
ISSN: 2158-6276
DOI: 10.1109/WHISPERS.2018.8747221
Fuente: Workshop on Hyperspectral Image and Signal Processing, Evolution in Remote Sensing[ISSN 2158-6276],v. 2018-September
Colección:Actas de congresos
miniatura
Adobe PDF (583,86 kB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.