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A NOVEL IMPLEMENTATION OF A HYPERSPECTRAL ANOMALY DETECTION
ALGORITHM FOR REAL TIME APPLICATIONS WITH PUSHBROOM SENSORS

Pablo Horstrand, Sebastián López, José Fco. López

Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC)

ABSTRACT

Anomaly detection is an increasingly important task when
dealing with hyperspectral images in order to distinguish rare
objects whose spectral characteristics substantially deviates
from those of the neighboring materials. In this paper, a novel
technique for accurate detection of anomalies in hyperspectral
images is introduced. One of the main features of this method
is its ability to process pushbroom data on-the-fly (i.e., line-
by-line), being clearly suitable for real time applications in
which memory resources are restricted as there is no need to
store the whole hypercube. Diverse quality metrics have been
applied on testing with real and synthetic hyperspectral data
sets in order to compare the accuracy of the proposed algo-
rithm over the state-of-the-art, showing the goodness of our
proposal.

Index Terms— Anomaly detection, push-broom sensors,
real-time

1. INTRODUCTION

Anomaly detection (AD) is an important technique in hy-
perspectral data analysis that permits to distinguish rare ob-
jects with unknown spectral signatures that are not particu-
larly abundant in a scene. This possibility of distinguishing a
scarce group of pixels whose spectral signature significantly
differs from their surroundings represents a crucial feature for
different military and civilian applications, inspiring the ap-
pearance of a huge amount of hyperspectral AD algorithms in
the recent scientific community.

The well-known ReedXiaoli (RX) algorithm [1] is one of
the first developments in this field, being viewed as a bench-
mark to which other methods are compared. The RX anomaly
detector is based on the Mahalanobis distance between the
pixel under test and the background class. It assumes that
the background follows a single Gaussian normal distribution
and the probability density function is used to classify pix-
els as part of the background class. Thus, the background
mean and inverse covariance matrix must be well estimated;

This work has been supported by the European Commission through
the ECSEL Joint Undertaking (ENABLE-S3 project, No. 692455) and the
Spanish Goverment through the projects ENABLE-S3 (No. PCIN-2015-225)
and PLATINO (No. TEC2017-86722-C4-1-R).

otherwise, they could be contaminated by anomalies causing
a subsequent misclassification. Several variations of the RX
detection technique have been proposed in the literature in
order to improve its performance. Subspace RX (SSRX) [2]
and RX after orthogonal subspace projection (OSPRX) [3]
are global anomaly detectors that apply principal component
analysis (PCA) or singular value decomposition (SVD) to the
datacube. The goal is to reduce the data volume to a smaller
subspace where the first PCA/SVD bands are supposed to rep-
resent the background class. SSRX discards these bands, and
then, RX is applied to the remaining subspace. On the con-
trary, OSPRX projects the data onto the orthogonal subspace
before applying RX.

Unfortunately, all these algorithms require the sensing of
the whole hyperspectral image before starting with the pro-
cess of finding the anomalies in the captured scene. However,
the most widely used sensors in nowadays remote sensing ap-
plications are based on pushbroom hyperspectral scanners, in
which the image is captured in a line-by-line fashion, since
they provide an excellent spectral resolution and take advan-
tage of the movement of the aircraft or satellite that carries
them for capturing the whole hypercube. Hence, for appli-
cations under strict real-time constraints in which the cap-
tured images must be processed in a short period of time, it is
smarter and much more efficient if the anomalies are uncov-
ered as soon as the hyperspectral data are sensed. Moreover,
this kind of on-the-fly anomaly detection drastically reduces
the formidable amount of memory that is required on-board
the sensing platform in order to store the entire hypercubes.
In this scenario, this paper proposes a novel hyperspectral
anomaly detection algorithm specially conceived for being
able to process the lines of pixels captured by a pushbroom
scanner as soon as they are sensed. More concretely, the pro-
posed Line-by-Line Anomaly Detection (LbL-AD) algorithm
is based, as the OSPRX algorithm, on the concept of orthog-
onal subspace projections but employing a processing chain
that guarantees a precise detection of the anomalies present
in a hyperspectral scene with a low computational budget.

The rest of the paper is organized as follows. Section
2 describes, step by step, the proposed LbL-AD algorithm.
Section 3 presents the hyperspectral data and the assessment
metrics utilized for comparing the performance given by the
LbL-AD algorithm versus other state-of-the-art proposals and



outlines the main results obtained. Finally, Section 4 draws
the most representative conclusions achieved in this work.

2. PROPOSED ALGORITHM

In order to keep a low computational complexity of the
anomaly detection process, the proposed LbL-AD algorithm
follows a twofold strategy: it starts processing as a whole
bunch the first n lines captured and then it follows a pro-
gressive line-by-line processing for the rest of the lines of
the image in which only a reduced amount of operations are
performed in order to update the results for the new acquired
line of pixels. In particular, the following procedure is carried
out for the first n lines captured by the sensor:

1. A reference mean value is computed considering all the
pixels contained in these lines.

2. The previously obtained mean value is subtracted to
each sensed pixel.

3. The covariance matrix corresponding to these pixels is
calculated. At this point, it is worth to highlight that this
covariance matrix is not divided by the total number of
pixels, since in this way this matrix can be reutilized
in the next iterations (next lines of pixels), adding to it
the new covariance matrix of the acquired line. In order
for this to work, the number of pixels so far processed
needs to be accounted as well.

4. Single value decomposition is performed then onto the
covariance matrix to find the d highest eigenvalues and
their associated eigenvectors. Here, in order to keep the
LbL-AD algorithm within a low computational burden,
the following computing strategy is applied:

a) First, the highest eigenvalue and its associated
eigenvector are obtained by means of the power
iteration method [4][5].

b) Afterwards, deflation [6] is performed onto the
covariance matrix to calculate the next d − 1
eigenvalues and eigenvectors, by means of suc-
cessively applying the power iteration method.
This process is repeated until the d desired num-
ber of components is obtained.

The reason for having selected this combination of
methods is dual: on one hand, it is a very fast method
for just obtaining a few principal components, and on
the other hand, if the algorithm is wisely initialized,
the computation time can be significantly reduced.
This last characteristic is exploited by the proposed
LbL-AD algorithm, as for each iteration (each new
line of pixels that is acquired after the first n lines) the
subspace calculated from the previously sensed pixels
is used for initializing the algorithm, which brings a
significant speedup factor to the process.

5. The pixels are projected onto the subspace spanned by
the d eigenvectors obtained in the previous step.

6. The Mahalanobis distance is calculated for each pixel,
as it is done in the original RX algorithm. This step
involves the calculation of the pseudoinverse of the co-
variance matrix. However, as far as the covariance ma-
trix in the new projected subspace is a diagonal matrix,
its inverse is obtained by just inverting its single ele-
ments individually, which is again a huge save in terms
of computing time.

7. Based on the calculated distance result, it is decided
whether each pixel is an anomaly or not.

Once these n lines of pixels have been processed the fol-
lowing line-by-line procedure is carried out for the rest of the
pixels in the hyperspectral scene under analysis:

A. The mean value obtained in step 1 is subtracted to each
pixel of the line under processing.

B. The covariance matrix of the line under processing is
calculated and added to the existing covariance matrix
calculated previously in step 3. As with step A, this is
performed under the assumption that the mean value
obtained in step 1 remains approximately constant,
which allows to skip the full computation of a new co-
variance matrix for each new line of pixels. Moreover,
this method allows us to keep in memory just the pre-
vious covariance matrix, but not the entire amount of
pixels processed, which means a huge save in memory
space and access time.

C. Steps 4 to 7 are applied to the line of pixels under pro-
cessing.

Figure 1 shows a general vision of the stages involved in
the algorithm. On the top we have a m bands hyperspectral
image (HSI) composed of N lines, each of them with lSize
amount of pixels. The first n lines are buffered into a matrix
M which afterwards is used to calculate the mean value µ
to be substracted to every processed image line. The covari-
ance Σ matrix results from the obtained normalized matrix
M ′, for which the eigenvectors ~u1, ..., ~ud and the eigenvalues
s1, ..., sd are calculated. M ′ is then projected into the new
subspace defined by the calculated set of eigenvectors in or-
der to obtain matrix M ′′. Finally, the Mahalanobis distance is
calculated for each pixel by using the covariance matrix in the
new subspace, represented by a diagonal matrix formed by the
eingenvalues in descending order. After the first n lines have
been processed, the proposed algorithm processes the sensed
data line by line, as it is described in the right hand side of
Figure1. As it has been already mentioned, the mean value µ
obtained in the first stage of the algorithm is substracted from
each pixel, and then, the covariance matrix is updated to ob-
tain Σnew and the new set of d eigenvalues and eigenvectors



for that Σnew are calculated. The process then continues as
before, i.e., projecting the image onto the new subspace and
obtaining the Mahalanobis distance for each pixel.
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Fig. 1. General overview of the LbL-AD algorithm.

3. RESULTS

This section first introduces the hyperspectral data and the
assessment metrics that have been used in order to demon-
strate the efficiency of the proposed technique and then, the
results obtained are presented and compared with those ob-
tained with state-of-the-art algorithms.

3.1. Hyperspectral Data

The simulated data have a size of 150×150 pixel vectors and
429 spectral bands. They were generated using a spectral
library collected from the United States Geological Survey
(USGS) [7]. Background was simulated using four different
spectral signatures whose abundances were generated using

a Gaussian spherical distribution. Twenty panels of different
sizes arranged in a 5×4 matrix were introduced as anomalies.
There are five 4×4 pure-pixel panels lined up in five rows in
the first column, five 2×2 mixed-pixel panels in the second
column, five subpixel panels combined with the background
in a proportion of 50% in the third column and five subpixel
panels blended with the background in a proportion of 75%.
Therefore, the simulated image has 110 anomaly pixels, a
0.49% of the image, as it is illustrated in Figure 2a. This data
set is very challenging for AD because of the high spectral
similarities between some anomalous and background signa-
tures.

In order to test the proposed algorithm in a more realistic
scenario, four real hyperspectral data sets have been addition-
ally used. The first real data set was taken over the Rochester
Institute of Technology (RIT) by the Wildfire Airborne Sensor
Program (WASP) Imaging System [8]. The system covers the
visible, short, mid and long-wave infrared regions of the spec-
trum. A portion of the overall image taken over a parking lot
with a size of 180×180 pixels and 120 bands has been used
in this study, as can be seen in Figure 2b, where anomalies
are fabric targets which consist on 72 pixels and account for
0.22% of the image. The second real data set was collected by
the NASA Jet Propulsion Laboratorys Airborne Visible Infra-
Red Imaging Spectrometer (AVIRIS) over the World Trade
Centre (WTC) area in New York City on September 16, 2001
[9]. The original data set has a size of 614×512 pixels and
224 spectral bands from 0.4 to 2.5 µm, although a smaller re-
gion with a size of 200×200 pixels was selected as data set.
Anomalies are thermal hot spots which consist on 83 pixels
and account for 0.21% of the image scene. Figure 2c shows a
representation of this image.

Finally, a real HSI was generated by one of our cam-
eras in our hyperspectral imaging laboratory using the Head-
wall hyperspectral sensor Hyperspec R© which operates in the
shortwave infrared range (SWIR) between 0.9-2.5 µm. It is
a push-broom camera which provides 384 spatial bands and
273 spectral bands [10]. However, due to low-signal-to-noise
ratio (SNR) of the first and last spectral bands, they were re-
moved (1-4, 269-273), so that, 264 available bands were re-
tained. The image scene covers an area of 199×170 pixels as
shown in Figure 2d. Anomaly targets are some legumes and
two plastic squares and they consist of 323 pixels, 0.95% of
the image. The main background material is beach sand.

3.2. Assessment Metrics

In order to compare the efficiency of the different detection
algorithms in terms of the accuracy of their detection results,
Receiver Operating Characteristic (ROC) curves and the area
under these curves (AUC) have been widely used in the liter-
ature. ROC curves are two dimensional graphical plots which
illustrate the relation between the true positive rates (TPR)
and the false positive rates (FPR) obtained for various thresh-



(a) (b)

(c) (d)

Fig. 2. Test data sets. (a) Synthetic image. (b) WASP RIT
scene. (c) AVIRIS WTC scene. (d) SWIR scene. Sand beach
background.

old settings. To compare the performance of several AD algo-
rithms, AUC is used as a scalar measure, so that, a representa-
tion with the biggest AUC outperforms the others. However,
this metric does not always reflect how well the algorithm
separates the anomalies from the background. For that rea-
son, two extra quality metrics will be utilized in this work:
Brier Score (BS) and Squared Error Ratio (SER)[11].

Brier Score (BS) measures the accuracy of probability
predictions in terms of marking anomalies and background
pixels with the highest and the lowest scores, respectively. If
anomaly pixels are represented as ones and background pix-
els as zeros in the ground-truth, then, the BS for each type of
pixel is calculated as:

BSanomaly = (pi − 1)2; (1)

BSbackground = (pi − 0)2; (2)

A global scalar metric named Squared Error Ratio (SER)
is obtained dividing the sum of all squared differences by the
total number of pixels in the image.

SER =

nanomaly(GT)∑
i=1

(pi − 1)2 +
nbck(GT)∑

j=1

(pj − 0)2

Np
· 100 (3)

where nanomaly(GT) represents the number of anomalous
pixels according to the ground-truth and nbck(GT) is the num-

ber of pixels belonging to the background class according to
the ground-truth.

Furthermore, the first addend of the SER metric numer-
ator is referred to as Anomaly Error and it provides insight
into the error made scoring anomalous pixels while the sec-
ond addend, named Bck Error, makes reference to the error
scoring background pixels.

Anomaly Error =

nanomaly(GT)∑
i=1

(pi − 1)2 (4)

Bck Error =

nbck(GT)∑
j=1

(pj − 0)2 (5)

3.3. Detection Performance

In order to test the performance of the proposed algorithm, its
detection efficiency has been compared with the OSPRX al-
gorithm and with one recent state-of-the-art anomaly detector
named PLP-KRXD [12] which is also able to process hyper-
spectral images in a line-by-line fashion. For this purpose, the
LbL-AD algorithm parameters described in Section 2, n and
d, have been set to 10 and 5 respectively as these values were
the ones that give the best average results with the test images
considered in this paper. In this sense, it is also worth to men-
tion that the PLP-KRXD has been initialized as reported by
the authors in their paper.

The results obtained in terms of the metrics described in
Section 3.2 are summarized in Table 1 for each of the already
mentioned images. From these results, it is concluded that the
proposed LbL-AD algorithm is able to provide similar results
with respect to the OSPRX algorithm, with the major advan-
tage of being able to compute the anomalies present in the
image as soon as the line of pixels are sensed. In addition,
it is also concluded from Table 1 that if we focus our atten-
tion only on the solution that allows to process the hyperspec-
tral images in a line-by-line fashion, our proposal delivers a
much better detection performance than the one provided by
the PLP-KRXD.

Finally, Figure 3 illustrates the two-dimensional plots of
the detection results given by the proposed LbL-AD algo-
rithm for all the considered datasets, visually demonstrating
that our proposal is able to capture in a very precise way all
the anomalies present in a given hyperspectral image inde-
pendently of the characteristics of the background and of the
anomalies present in the scene under analysis.

4. CONCLUSIONS

LbL-AD (Line-by-Line Anomaly Detection) algorithm is
shown for the first time in this paper. This technique presents
a substantial improvement with respect to other ones shown



Table 1. Assessment Metric Summary
AUC Anomaly Error Bck Error SER

Synthetic Image

OSPRX 1.000 48.7062 0.1587 0.2172

LbL-AD 1.000 34.1587 1.3211 0.1577

PLP-KRXD 0.9401 103.9872 8.0186 0.4978

WASP RIT scene

OSPRX 0.9994 40.9303 1.1583 0.1299

LbL-AD 0.9988 45.4502 1.4871 0.1445

PLPK-RXD 0.7829 71.9865 8.6668 0.2489

AVIRIS WTC

OSPRX 0.9727 72.9378 0.7676 0.1843

LbL-AD 0.9673 74.6396 1.3203 0.1899

PLP-KRXD 0.5161 82.9752 5.8713 0.2221

SWIR beach background

OSPRX 0.9996 130.3023 7.7523 0.4081

LbL-AD 0.9993 163.486 4.462 0.4965

PLP-KRXD 0.7988 322.8650 4.7671 0.9685

previously in the scientific literature, being capable of pro-
cessing on-the-fly hyperspectral images captured by pushb-
room sensors. Quality measurements have been applied with
different real and artificial hyperspectral images, opening new
avenues when real time applications and memory restrictions
are the target.
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