Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/70065
Título: A hardware-friendly algorithm for theo on-board compression of hyperspectral images
Autores/as: Guerra, Raul 
Diaz, Maria 
Barrios Alfaro, Yubal 
Lopez, Sebastian 
Sarmiento, Roberto 
Clasificación UNESCO: 3307 Tecnología electrónica
3325 Tecnología de las telecomunicaciones
Palabras clave: Hyperlca Compressor
Hyperspectral Compression
Integer Arithmetic
On-Board Compression
Fecha de publicación: 2018
Conferencia: 9th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, WHISPERS 2018 
Resumen: Hyperspectral sensors are able to provide information that is useful for many different applications. However, the huge amounts of data collected by these sensors are not exempt of drawbacks, especially in remote sensing environments where the hyperspectral images are collected on-board satellites and need to be transferred to the Earths surface. In this situation, an efficient compression of the hyperspectral images is mandatory in order to save bandwidth and storage space. Additionally, the computational capabilities of hardware devices available on-board satellites is limited, being its efficiency typically affected by the data types required by the compression algorithms. This work evaluates the precision required by the Lossy Compression Algorithm for Hyperspectral Image Systems (HyperLCA) compressor in order to execute it using just integer arithmetic operations without decreasing its compression rate-distortion performance. The goal is to make the HyperLCA compressor more suitable for on-board hardware processors, which are more efficient executing integer operations than floating point operations.The proposed integer version of the HyperLCA compressor has been tested using different hyperspectral images, comparing the obtained results with those provided by its floating point version. The obtained results verify that the HyperLCA compressor can be programmed using just integer arithmetic operations in order to provide the same compression results than when using floating point precision, what easies its implementation in many hardware devices.
URI: http://hdl.handle.net/10553/70065
ISBN: 9781728115818
ISSN: 2158-6276
DOI: 10.1109/WHISPERS.2018.8747229
Fuente: Workshop on Hyperspectral Image and Signal Processing, Evolution in Remote Sensing [ISSN 2158-6276], v. 20, p. 1- 5 18-September
Colección:Actas de congresos
miniatura
Hardware_friendly
Adobe PDF (5,26 MB)
Vista completa

Citas SCOPUSTM   

2
actualizado el 24-nov-2024

Visitas

140
actualizado el 19-oct-2024

Descargas

194
actualizado el 19-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.