Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/70040
Título: Acoustic classification of singing insects based on MFCC/LFCC fusion
Autores/as: Noda, Juan J.
Travieso-González, Carlos M. 
Sánchez-Rodríguez, David 
Alonso-Hernández, Jesús B. 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Acoustic Monitoring
Bioacoustic Taxonomy Identification
Biological Acoustic Analysis
Insect Sound Classification
Support Vector Machine
Fecha de publicación: 2019
Publicación seriada: Applied Sciences (Basel) 
Resumen: This work introduces a new approach for automatic identification of crickets, katydids and cicadas analyzing their acoustic signals. We propose the building of a tool to identify this biodiversity. The study proposes a sound parameterization technique designed specifically for identification and classification of acoustic signals of insects using Mel Frequency Cepstral Coefficients (MFCC) and Linear Frequency Cepstral Coefficients (LFCC). These two sets of coefficients are evaluated individually as has been done in previous studies and have been compared with the fusion proposed in this work, showing an outstanding increase in identification and classification at species level reaching a success rate of 98.07% on 343 insect species.
URI: http://hdl.handle.net/10553/70040
ISSN: 2076-3417
DOI: 10.3390/app9194097
Fuente: Applied Sciences (Basel) [ISSN 2076-3417], v. 9 (19), 4097
Colección:Artículos
miniatura
pdf
Adobe PDF (1,16 MB)
Vista completa

Citas SCOPUSTM   

40
actualizado el 05-ene-2025

Citas de WEB OF SCIENCETM
Citations

28
actualizado el 05-ene-2025

Visitas

112
actualizado el 24-feb-2024

Descargas

93
actualizado el 24-feb-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.