Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/70032
Title: New Ti-6Al-2Nb-2Ta-1Mo alloy as implant biomaterial: In vitro corrosion and in vivo osseointegration evaluations
Authors: Trincă, Lucia Carmen
Mareci, Daniel
Solcan, Carmen
Fântânariu, Mircea
Burtan, Liviu
Hriţcu, Luminiţa
Chiruţă, Ciprian
Fernández-Mérida, Luis
Rodríguez-Raposo, Raquel 
Santana, Juan J. 
Souto, Ricardo M.
UNESCO Clasification: 3314 Tecnología médica
3303 ingeniería y tecnología químicas
Keywords: Computed Tomography
Electrochemical Impedance Spectroscopy
In Vitro Corrosion Testing
In Vivo Osseointegration Evaluation
Rabbit Animal Model, et al
Issue Date: 2020
Journal: Materials Chemistry and Physics 
Abstract: Over the last decade, new titanium alloys are developed in different areas of implantology. The aim of this study was to characterize a new Ti-Al-Nb-Ta-Mo based alloy, with high potential for being used as a biomedical implant. The evaluation of Ti-6Al-2Nb-2Ta-1Mo was performed both in vitro (by monitoring its corrosion resistance in Hank's Balanced Salt Solution, HBSS) and in vivo (by evaluating the osseointegration following rabbit tibia implantation), by comparison with titanium and Ti-6Al-7Nb alloy. Electrochemical impedance spectroscopy (EIS) data showed high impedance values for all titanium samples after 1 week immersion times in HBSS at 37 °C. According to EIS analysis, the corrosion resistance of the Ti-6Al-2Nb-2Ta-1Mo alloy immersed in HBSS was higher compared to the standard cp-Ti or with the Ti-6Al-7Nb alloy. In addition, a higher degree of osseointegration was achieved by the Ti-6Al-2Nb-2Ta-1Mo alloy, thus probing that a higher resistance to electrochemical corrosion provided enhanced protection to the implant surface against biodegradation, thus positively affecting the qualitative and quantitative evolution of bone tissue repair.
URI: http://hdl.handle.net/10553/70032
ISSN: 0254-0584
DOI: 10.1016/j.matchemphys.2019.122229
Source: Materials Chemistry and Physics [ISSN 0254-0584], v. 240
Appears in Collections:Artículos
Show full item record

SCOPUSTM   
Citations

17
checked on May 5, 2024

WEB OF SCIENCETM
Citations

16
checked on Feb 25, 2024

Page view(s)

76
checked on Mar 2, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.