Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/69983
DC FieldValueLanguage
dc.contributor.authorHernández-Alonso, Pablo-
dc.contributor.authorPapandreou, Christopher-
dc.contributor.authorBulló, Mònica-
dc.contributor.authorRuiz-Canela, Miguel-
dc.contributor.authorDennis, Courtney-
dc.contributor.authorDeik, Amy-
dc.contributor.authorWang, Dong D.-
dc.contributor.authorGuasch-Ferré, Marta-
dc.contributor.authorYu, Edward-
dc.contributor.authorToledo, Estefanía-
dc.contributor.authorRazquin, Cristina-
dc.contributor.authorCorella, Dolores-
dc.contributor.authorEstruch, Ramon-
dc.contributor.authorRos, Emilio-
dc.contributor.authorFitó, Montserrat-
dc.contributor.authorArós, Fernando-
dc.contributor.authorFiol, Miquel-
dc.contributor.authorSerra Majem, Luis-
dc.contributor.authorLiang, Liming-
dc.contributor.authorClish, Clary B.-
dc.contributor.authorMartínez-González, Miguel A.-
dc.contributor.authorHu, Frank B.-
dc.contributor.authorSalas-Salvadó, Jordi-
dc.date.accessioned2020-02-05T12:51:42Z-
dc.date.available2020-02-05T12:51:42Z-
dc.date.issued2019-
dc.identifier.issn1613-4125-
dc.identifier.otherScopus-
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/69983-
dc.description.abstractThe relationship between red wine (RW) consumption and metabolism is poorly understood. It is aimed to assess the systemic metabolomic profiles in relation to frequent RW consumption as well as the ability of a set of metabolites to discriminate RW consumers. Methods and results: A cross-sectional analysis of 1157 participants is carried out. Subjects are divided as non-RW consumers versus RW consumers (>1 glass per day RW [100 mL per day]). Plasma metabolomics analysis is performed using LC–MS. Associations between 386 identified metabolites and RW consumption are assessed using elastic net regression analysis taking into consideration baseline significant covariates. Ten-cross-validation (CV) is performed and receiver operating characteristic curves are constructed in each of the validation datasets based on weighted models. A subset of 13 metabolites is consistently selected and RW consumers versus nonconsumers are discriminated. Based on the multi-metabolite model weighted with the regression coefficients of metabolites, the area under the curve is 0.83 (95% CI: 0.80–0.86). These metabolites mainly consisted of lipid species, some organic acids, and alkaloids. Conclusions: A multi-metabolite model identified in a Mediterranean population appears useful to discriminate between frequent RW consumers and nonconsumers. Further studies are needed to assess the contribution of these metabolites in health and disease.-
dc.languageeng-
dc.relation.ispartofMolecular Nutrition and Food Research-
dc.sourceMolecular Nutrition & Food Research[ISSN 1613-4125],v. 63 (17), (Septiembre 2019)-
dc.subject32 Ciencias médicas-
dc.subject.otherLc-Ms-
dc.subject.otherLipidomics-
dc.subject.otherMetabolites-
dc.subject.otherMetabolomics-
dc.subject.otherRed Wine-
dc.titlePlasma Metabolites Associated with Frequent Red Wine Consumption: A Metabolomics Approach within the PREDIMED Study-
dc.typeinfo:eu-repo/semantics/article-
dc.typeArticle-
dc.identifier.doi10.1002/mnfr.201900140-
dc.identifier.scopus85069833856-
dc.identifier.isi000476058500001-
dc.contributor.authorscopusid56239477300-
dc.contributor.authorscopusid36470858000-
dc.contributor.authorscopusid57194127916-
dc.contributor.authorscopusid6603417884-
dc.contributor.authorscopusid57130114700-
dc.contributor.authorscopusid54880256400-
dc.contributor.authorscopusid56351539800-
dc.contributor.authorscopusid55110459200-
dc.contributor.authorscopusid56660312400-
dc.contributor.authorscopusid7003562288-
dc.contributor.authorscopusid13612519200-
dc.contributor.authorscopusid7003570538-
dc.contributor.authorscopusid7005989830-
dc.contributor.authorscopusid57202558933-
dc.contributor.authorscopusid57206229124-
dc.contributor.authorscopusid7004158382-
dc.contributor.authorscopusid7005315313-
dc.contributor.authorscopusid57202560799-
dc.contributor.authorscopusid57204812694-
dc.contributor.authorscopusid35460787900-
dc.contributor.authorscopusid7004290629-
dc.contributor.authorscopusid57208121316-
dc.contributor.authorscopusid7003357665-
dc.identifier.eissn1613-4133-
dc.identifier.issue17-
dc.relation.volume63-
dc.investigacionCiencias de la Salud-
dc.type2Artículo-
dc.contributor.daisngid31721010-
dc.contributor.daisngid1497982-
dc.contributor.daisngid167315-
dc.contributor.daisngid31761100-
dc.contributor.daisngid4042951-
dc.contributor.daisngid1279688-
dc.contributor.daisngid1288250-
dc.contributor.daisngid854422-
dc.contributor.daisngid30357635-
dc.contributor.daisngid140645-
dc.contributor.daisngid845551-
dc.contributor.daisngid25404-
dc.contributor.daisngid19357-
dc.contributor.daisngid23007-
dc.contributor.daisngid31565556-
dc.contributor.daisngid31740745-
dc.contributor.daisngid78038-
dc.contributor.daisngid30312401-
dc.contributor.daisngid104058-
dc.contributor.daisngid84840-
dc.contributor.daisngid17754-
dc.contributor.daisngid276-
dc.contributor.daisngid25605-
dc.description.numberofpages9-
dc.utils.revision-
dc.contributor.wosstandardWOS:Hernndez-Alonso, P-
dc.contributor.wosstandardWOS:Papandreou, C-
dc.contributor.wosstandardWOS:Bull, M-
dc.contributor.wosstandardWOS:Ruiz-Canela, M-
dc.contributor.wosstandardWOS:Dennis, C-
dc.contributor.wosstandardWOS:Deik, A-
dc.contributor.wosstandardWOS:Wang, DD-
dc.contributor.wosstandardWOS:Guasch-Ferr, M-
dc.contributor.wosstandardWOS:Yu, E-
dc.contributor.wosstandardWOS:Toledo, E-
dc.contributor.wosstandardWOS:Razquin, C-
dc.contributor.wosstandardWOS:Corella, D-
dc.contributor.wosstandardWOS:Estruch, R-
dc.contributor.wosstandardWOS:Ros, E-
dc.contributor.wosstandardWOS:Fit, M-
dc.contributor.wosstandardWOS:Ars, F-
dc.contributor.wosstandardWOS:Fiol, M-
dc.contributor.wosstandardWOS:Serra-Majem, L-
dc.contributor.wosstandardWOS:Liang, LM-
dc.contributor.wosstandardWOS:Clish, CB-
dc.contributor.wosstandardWOS:Martnez-Gonzlez, MA-
dc.contributor.wosstandardWOS:Hu, FB-
dc.contributor.wosstandardWOS:Salas-Salvad, J-
dc.date.coverdateSeptiembre 2019-
dc.identifier.ulpgces
dc.description.sjr1,421
dc.description.jcr5,309
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IUIBS: Nutrición-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.deptDepartamento de Ciencias Clínicas-
crisitem.author.orcid0000-0002-9658-9061-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.fullNameSerra Majem, Luis-
Appears in Collections:Artículos
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.