Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/69951
Title: Aorta centerline smoothing and registration using variational models
Authors: Alvarez, Luis 
Santana-Cedrés, Daniel 
Tahoces, Pablo G.
Carreira, José M.
UNESCO Clasification: 220990 Tratamiento digital. Imágenes
Keywords: 3D Curve Registration
3D Curve Smoothing
Aorta Centerline
Variational Methods
Issue Date: 2019
Publisher: Springer 
Project: Nuevos Modelos Matemáticos Para la Segmentación y Clasificación en Imágenes 
Journal: Lecture Notes in Computer Science 
Conference: 7th International Conference on Scale Space and Variational Methods in Computer Vision, (SSVM 2019) 
Abstract: In this work we present an application of variational techniques to the smoothing and registration of aorta centerlines. We assume that a 3D segmentation of the aorta lumen and an initial estimation of the aorta centerline are available. The centerline smoothing technique aims to maximize the distance of the centerline to the boundary of the aorta lumen segmentation but keeping the curve smooth. The proposed registration technique computes a rigid transformation by minimizing the squared Euclidean distance between the points of the curves, using landmarks and taking into account that the curves can be of different lengths. We present a variety of experiments on synthetic and real scenarios in order to show the performance of the methods.
URI: http://hdl.handle.net/10553/69951
ISBN: 978-3-030-22367-0
ISSN: 0302-9743
DOI: 10.1007/978-3-030-22368-7_35
Source: Scale Space and Variational Methods in Computer Vision. SSVM 2019. Lecture Notes in Computer Science, v. 11603 LNCS, p. 447-458
Appears in Collections:Capítulo de libro
Adobe PDF (1,85 MB)
Show full item record

SCOPUSTM   
Citations

2
checked on Dec 22, 2024

WEB OF SCIENCETM
Citations

3
checked on Dec 22, 2024

Page view(s)

157
checked on Dec 21, 2024

Download(s)

92
checked on Dec 21, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.