Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/69928
Título: Analysis of the transformed contour in the writer identification
Autores/as: Travieso González, Carlos Manuel 
Vásquez-Nuñez, Jose Luis
Briceno-Lobo, Juan Carlos
Clasificación UNESCO: 240401 Bioestadística
Palabras clave: Biometrics
Classification Systems
Feature Transformation
Handwritten Writing
Offline Approach, et al.
Fecha de publicación: 2019
Editor/a: Noida
Publicación seriada: 2019 6Th International Conference On Signal Processing And Integrated Networks (Spin)
Conferencia: 6th International Conference on Signal Processing and Integrated Networks, SPIN 2019 
Resumen: This work shows an approach for the writer identification using off-line handwritten writing. The contour of handwritten words is calculated. That feature is transformed by a Hidden Markov Model, in order to get a hyperdimensionality of new features. Later, a support vector machine classifier is applied to analyze the grade of discrimination. The approach reaches an accuracy between 98,60% and 100%, according to the type of word. This proposal presents a robust and novel system for the based-writing identification in comparison versus the state-of-the-art; and shows the study of its efficiency according to different off-line handwritten words.
URI: http://hdl.handle.net/10553/69928
ISBN: 9781728113791
DOI: 10.1109/SPIN.2019.8711588
Fuente: 2019 6th International Conference on Signal Processing and Integrated Networks, SPIN 2019, p. 195-199
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

1
actualizado el 24-nov-2024

Visitas

126
actualizado el 19-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.