Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/69873
Título: | Benthic mapping using high resolution multispectral and hyperspectral imagery | Autores/as: | Marcello, J. Eugenio, F. Marques, F. |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Benthic Mapping Classification Hyperspectral Seagrass Svm |
Fecha de publicación: | 2018 | Publicación seriada: | IEEE International Geoscience and Remote Sensing Symposium proceedings | Conferencia: | IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2018) | Resumen: | Coastal ecosystems are essential due to their high biodiversity and primary production, however they are extremely complex and with high spatial and temporal variability. Thus, to properly manage them it is necessary a systematic monitoring. Remote sensing can be very useful due to the spatial and spectral improvement of satellites and the availability of airborne or drone hyperspectral sensors. Unfortunately, the mapping of coastal areas is challenging due to the low SNR received at the sensor, as a consequence of the minimum reflectivity of the seafloor and the atmospheric and water column disturbances. In this context, the goal of this work is to obtain a robust classification methodology to generate accurate benthic habitat maps applying object-oriented and pixel-based classification methods in shallow waters using WorldView-2 and AHS (Airborne Hyperspectral Scanner) images. Maspalomas (Gran Canaria, Spain) was studied due to its complexity and the presence of important seagrass meadows. | URI: | http://hdl.handle.net/10553/69873 | ISBN: | 9781538671504 | ISSN: | 2153-6996 | DOI: | 10.1109/IGARSS.2018.8519166 | Fuente: | IEEE International Geoscience and Remote Sensing Symposium proceedings [ISSN 2153-6996], v. 2018-July, p. 1535-1538 |
Colección: | Actas de congresos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.