Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/69763
Título: Proposal for a hierarchical, multidimensional, and multivariate approach to investigate cognitive aging
Autores/as: Machado, Alejandra
Barroso, José
Molina, Yaiza
Nieto, Antonieta
Díaz-Flores, Lucio
Westman, Eric
Ferreira, Daniel
Clasificación UNESCO: 320107 Geriatría
Palabras clave: Aging
Cognition
Hierarchical
Magnetic Resonance Imaging
Multivariate Analysis, et al.
Fecha de publicación: 2018
Publicación seriada: Neurobiology of Aging 
Resumen: Cognitive aging is highly complex. We applied a data-driven statistical method to investigate aging from a hierarchical, multidimensional, and multivariate approach. Orthogonal partial least squares to latent structures and hierarchical models were applied for the first time in a study of cognitive aging. The association between age and a total of 316 demographic, clinical, cognitive, and neuroimaging measures was simultaneously analyzed in 460 cognitively normal individuals (35–85 years). Age showed a strong association with brain structure, especially with cortical thickness in frontal and parietal association regions. Age also showed a fairly strong association with cognition. Although a strong association of age with executive functions and processing speed was captured as expected, the association of age with visual memory was stronger. Clinical measures were less strongly associated with age. Hierarchical and correlation analyses further showed these associations in a neuroimaging-cognitive-clinical order of importance. We conclude that orthogonal partial least square and hierarchical models are a promising approach to better understand the complexity in cognitive aging.
URI: http://hdl.handle.net/10553/69763
ISSN: 0197-4580
DOI: 10.1016/j.neurobiolaging.2018.07.017
Fuente: Neurobiology of Aging [ISSN 0197-4580], v. 71, p. 179-188
Colección:Artículos
Vista completa

Citas SCOPUSTM   

26
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

21
actualizado el 17-nov-2024

Visitas

52
actualizado el 04-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.