Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/69759
DC FieldValueLanguage
dc.contributor.authorBanerjee, Anushkaen_US
dc.contributor.authorGhosh, Alekhyaen_US
dc.contributor.authorPalit, Sarbanien_US
dc.contributor.authorFerrer Ballester, Miguel Ángelen_US
dc.date.accessioned2020-02-05T12:49:52Z-
dc.date.accessioned2020-05-08T10:33:34Z-
dc.date.available2020-02-05T12:49:52Z-
dc.date.available2020-05-08T10:33:34Z-
dc.date.issued2018en_US
dc.identifier.isbn978-3-319-94210-0en_US
dc.identifier.issn0302-9743en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/69759-
dc.description.abstractIn music information retrieval, identifying instruments has always been a challenging aspect for researchers. The proposed approach offers a simple and novel approach with highly accurate results in identifying instruments belonging to the same class, the string family in particular. The method aims to achieve this objective in an efficient manner, without the inclusion of any complex computations. The feature set developed using frequency and wavelet domain analyses has been employed using different prevalent classification algorithms ranging from the primitive k-NN to the recent Random Forest method. The results are extremely encouraging in all the cases. The best results include achieving an accuracy of 89.85% by SVM and 100% accuracy by Random Forest method for four and three instruments respectively. The major contribution of this work is the achievement of a very high level of accuracy of identification from among the same class of instruments, which has not been reported in existing works. Other significant contributions include the construction of only six features which is a major factor in bringing down the data requirements. The ultimate benefit is a substantial reduction of computational complexity as compared to existing approaches.en_US
dc.languageengen_US
dc.publisherSpringeren_US
dc.relation.ispartofLecture Notes in Computer Scienceen_US
dc.sourceImage and Signal Processing. ICISP 2018. Lecture Notes in Computer Science, v. 10884 LNCS, p. 165-175en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherHarmonic Componentsen_US
dc.subject.otherMusic Information Retrievalen_US
dc.subject.otherRandom Foresten_US
dc.subject.otherSVMen_US
dc.subject.otherWavelet Coefficientsen_US
dc.titleA novel approach to string instrument recognitionen_US
dc.typeinfo:eu-repo/semantics/bookParten_US
dc.typeBook parten_US
dc.relation.conference8th International Conference on Image and Signal Processing (ICISP)en_US
dc.identifier.doi10.1007/978-3-319-94211-7_19en_US
dc.identifier.scopus85049676230-
dc.identifier.isi000469336800019-
dc.contributor.authorscopusid57202893854-
dc.contributor.authorscopusid57211886029-
dc.contributor.authorscopusid25638845900-
dc.contributor.authorscopusid56126176900-
dc.description.lastpage175en_US
dc.description.firstpage165en_US
dc.relation.volume10884 LNCSen_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Capítulo de libroen_US
dc.contributor.daisngid30217936-
dc.contributor.daisngid15878877-
dc.contributor.daisngid2671012-
dc.contributor.daisngid4492603-
dc.identifier.eisbn978-3-319-94211-7-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Banerjee, A-
dc.contributor.wosstandardWOS:Ghosh, A-
dc.contributor.wosstandardWOS:Palit, S-
dc.contributor.wosstandardWOS:Ballester, MAF-
dc.date.coverdateEnero 2018en_US
dc.identifier.supplement0302-9743-
dc.identifier.supplement0302-9743-
dc.identifier.conferenceidevents121157-
dc.identifier.ulpgcen_US
dc.identifier.ulpgcen_US
dc.identifier.ulpgcen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,283
dc.description.sjrqQ2
dc.description.spiqQ1
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.event.eventsstartdate02-07-2018-
crisitem.event.eventsenddate04-07-2018-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-2924-1225-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameFerrer Ballester, Miguel Ángel-
Appears in Collections:Capítulo de libro
Show simple item record

SCOPUSTM   
Citations

8
checked on Nov 17, 2024

WEB OF SCIENCETM
Citations

4
checked on Nov 17, 2024

Page view(s)

141
checked on Aug 24, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.