Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/69754
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Singh, Anushikha | en_US |
dc.contributor.author | Dutta, Malay Kishore | en_US |
dc.contributor.author | Travieso González, Carlos Manuel | en_US |
dc.date.accessioned | 2020-02-05T12:49:51Z | - |
dc.date.available | 2020-02-05T12:49:51Z | - |
dc.date.issued | 2017 | en_US |
dc.identifier.isbn | 9781538630044 | en_US |
dc.identifier.other | Scopus | - |
dc.identifier.uri | http://hdl.handle.net/10553/69754 | - |
dc.description.abstract | Myopathy is a very common muscular disease in which muscle fibers do not work properly resulting in muscle weakness, stiffness, cramps etc. Clinically, analysis of Electromyography (EMG) signals plays an important role in diagnosis of myopathy. This work presents signal processing based method for automated diagnosis of myopathy from EMG signals. EMG signals collected from biceps brachii (long head) muscles were analyzed for identification of myopathy using artificial intelligence method. Basic statistical features from EMG signals were extracted and studied to find out discrimination between normal and myopathy. Artificial neural network classifier was used for identification of myopathy. Experiments were carried on a comprehensive database of EMG signal and results are encouraging. The proposed method achieved 87% accuracy with 90% sensitivity for diagnosis of Myopathy disease. | en_US |
dc.language | eng | en_US |
dc.source | 2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics, UPCON 2017,v. 2018-January, p. 628-631 | en_US |
dc.subject | 3314 Tecnología médica | en_US |
dc.subject.other | Artificial Intelligence | en_US |
dc.subject.other | Emg Signals | en_US |
dc.subject.other | Myopathy | en_US |
dc.subject.other | Signal Processing | en_US |
dc.title | Analysis of EMG signals for automated diagnosis of myopathy | en_US |
dc.type | info:eu-repo/semantics/conferenceObject | en_US |
dc.type | ConferenceObject | en_US |
dc.relation.conference | 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics, UPCON 2017 | en_US |
dc.identifier.doi | 10.1109/UPCON.2017.8251122 | en_US |
dc.identifier.scopus | 85045959132 | - |
dc.identifier.isi | 000426124200111 | - |
dc.contributor.authorscopusid | 55885045200 | - |
dc.contributor.authorscopusid | 35291803600 | - |
dc.contributor.authorscopusid | 57196462914 | - |
dc.description.lastpage | 631 | en_US |
dc.description.firstpage | 628 | en_US |
dc.relation.volume | 2018-January | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Actas de congresos | en_US |
dc.contributor.daisngid | 802071 | - |
dc.contributor.daisngid | 35026383 | - |
dc.contributor.daisngid | 265761 | - |
dc.description.numberofpages | 4 | en_US |
dc.identifier.eisbn | 978-1-5386-3004-4 | - |
dc.utils.revision | Sí | en_US |
dc.contributor.wosstandard | WOS:Singh, A | - |
dc.contributor.wosstandard | WOS:Dutta, MK | - |
dc.contributor.wosstandard | WOS:Travieso, CM | - |
dc.date.coverdate | Junio 2017 | en_US |
dc.identifier.conferenceid | events121087 | - |
dc.identifier.ulpgc | Sí | es |
item.fulltext | Sin texto completo | - |
item.grantfulltext | none | - |
crisitem.event.eventsstartdate | 26-10-2017 | - |
crisitem.event.eventsenddate | 28-10-2017 | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.orcid | 0000-0002-4621-2768 | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.fullName | Travieso González, Carlos Manuel | - |
Colección: | Actas de congresos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.