Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/69754
DC FieldValueLanguage
dc.contributor.authorSingh, Anushikhaen_US
dc.contributor.authorDutta, Malay Kishoreen_US
dc.contributor.authorTravieso González, Carlos Manuelen_US
dc.date.accessioned2020-02-05T12:49:51Z-
dc.date.available2020-02-05T12:49:51Z-
dc.date.issued2017en_US
dc.identifier.isbn9781538630044en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/69754-
dc.description.abstractMyopathy is a very common muscular disease in which muscle fibers do not work properly resulting in muscle weakness, stiffness, cramps etc. Clinically, analysis of Electromyography (EMG) signals plays an important role in diagnosis of myopathy. This work presents signal processing based method for automated diagnosis of myopathy from EMG signals. EMG signals collected from biceps brachii (long head) muscles were analyzed for identification of myopathy using artificial intelligence method. Basic statistical features from EMG signals were extracted and studied to find out discrimination between normal and myopathy. Artificial neural network classifier was used for identification of myopathy. Experiments were carried on a comprehensive database of EMG signal and results are encouraging. The proposed method achieved 87% accuracy with 90% sensitivity for diagnosis of Myopathy disease.en_US
dc.languageengen_US
dc.source2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics, UPCON 2017,v. 2018-January, p. 628-631en_US
dc.subject3314 Tecnología médicaen_US
dc.subject.otherArtificial Intelligenceen_US
dc.subject.otherEmg Signalsen_US
dc.subject.otherMyopathyen_US
dc.subject.otherSignal Processingen_US
dc.titleAnalysis of EMG signals for automated diagnosis of myopathyen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics, UPCON 2017en_US
dc.identifier.doi10.1109/UPCON.2017.8251122en_US
dc.identifier.scopus85045959132-
dc.identifier.isi000426124200111-
dc.contributor.authorscopusid55885045200-
dc.contributor.authorscopusid35291803600-
dc.contributor.authorscopusid57196462914-
dc.description.lastpage631en_US
dc.description.firstpage628en_US
dc.relation.volume2018-Januaryen_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.contributor.daisngid802071-
dc.contributor.daisngid35026383-
dc.contributor.daisngid265761-
dc.description.numberofpages4en_US
dc.identifier.eisbn978-1-5386-3004-4-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Singh, A-
dc.contributor.wosstandardWOS:Dutta, MK-
dc.contributor.wosstandardWOS:Travieso, CM-
dc.date.coverdateJunio 2017en_US
dc.identifier.conferenceidevents121087-
dc.identifier.ulpgces
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.event.eventsstartdate26-10-2017-
crisitem.event.eventsenddate28-10-2017-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameTravieso González, Carlos Manuel-
Appears in Collections:Actas de congresos
Show simple item record

SCOPUSTM   
Citations

8
checked on Dec 29, 2024

WEB OF SCIENCETM
Citations

3
checked on Feb 25, 2024

Page view(s)

73
checked on Jun 8, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.