Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/69748
Título: | Automatic computer vision-based detection and quantitative analysis of indicative parameters for grading of diabetic retinopathy | Autores/as: | Issac, Ashish Dutta, Malay Kishore Travieso González, Carlos Manuel |
Clasificación UNESCO: | 320109 Oftalmología 3307 Tecnología electrónica |
Fecha de publicación: | 2020 | Publicación seriada: | Neural Computing and Applications | Resumen: | Diabetic retinopathy (DR) is one of the complications of diabetes affecting the eyes. If not treated at an early stage, then it can cause permanent blindness. The present work proposes a method for automatic detection of pathologies that are indicative parameters for DR and use them strategically in a framework to grade the severity of the disease. The bright lesions are highlighted using a normalization process followed by anisotropic diffusion and intensity threshold for detection of lesions which makes the algorithm robust to correctly reject false positives. SVM-based classifier is used to reject false positives using 10 distinct feature types. Red lesions are accurately detected from a shade-corrected green channel image, followed by morphological flood filling and regional minima operations. The rejection of false positives using geometrical features makes the system less complex and computationally efficient. A comprehensive quantitative analysis to grade the severity of the disease has resulted in an average sensitivity of 92.85 and 86.03% on DIARETDB1 and MESSIDOR databases, respectively. | URI: | http://hdl.handle.net/10553/69748 | ISSN: | 0941-0643 | DOI: | 10.1007/s00521-018-3443-z | Fuente: | Neural Computing and Applications [ISSN 0941-0643], n. 32, p. 15687–15697 |
Colección: | Artículos |
Citas SCOPUSTM
10
actualizado el 15-dic-2024
Citas de WEB OF SCIENCETM
Citations
9
actualizado el 15-dic-2024
Visitas
108
actualizado el 08-jun-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.