Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/69324
DC FieldValueLanguage
dc.contributor.authorPaz, Rubénen_US
dc.contributor.authorMonzon, Mario D.en_US
dc.date.accessioned2020-01-24T11:54:41Z-
dc.date.available2020-01-24T11:54:41Z-
dc.date.issued2019en_US
dc.identifier.issn2040-7939en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/69324-
dc.description.abstractThe optimum scaffold for tissue engineering must guarantee the mechanical integrity in the damaged zone and ensure an appropriate stiffness to regulate the cellular function. For this to happen, scaffolds must be designed to match the stiffness of the native tissue. Moreover, the degradation rate in the case of bioresorbable materials must also be considered to fit the tissue regeneration rate. This paper presents a methodology based on design of experiments, finite element analysis, metamodels, and genetic algorithms to optimize the assignation of material in different sections of the scaffold to obtain the desired stiffness over time and comply with the constraints needed. The method applies an initial sampling focused on a modified Latin Hypercube strategy to obtain data from the simulations. These data are used in the next stages to generate the metamodels by using kriging. The predictions of the metamodels are used by the genetic algorithms to find the best estimated solutions. Different runs of the genetic algorithm drive the sampling, improving the accuracy of the surrogate models over the optimization process. Once the accuracy of the metamodels estimates is sufficient, a final genetic algorithm is applied to obtain the optimum design. This approach guarantees a low sampling effort and convergence to carry out the optimization process. The method allows the combination of discrete and continuous design variables in the optimization problem, and it can be applied both in solid and in hierarchical-based geometries.en_US
dc.languageengen_US
dc.relation.ispartofInternational Journal for Numerical Methods in Biomedical Engineeringen_US
dc.sourceInternational Journal For Numerical Methods In Biomedical Engineering[ISSN 2040-7939],v. 35 (10)en_US
dc.subject3328 Procesos tecnológicosen_US
dc.subject.otherOptimal-Designen_US
dc.subject.otherTissueen_US
dc.subject.otherMicrostructureen_US
dc.subject.otherArchitectureen_US
dc.subject.otherGeometryen_US
dc.subject.otherCellsen_US
dc.titleOptimization methodology for the material assignation in bioprinted scaffolds to achieve the desired stiffness over timeen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/cnm.3248
dc.identifier.scopus85071243936
dc.identifier.isi000482845800001-
dc.contributor.authorscopusid8590822200
dc.contributor.authorscopusid7003371153
dc.identifier.eissn2040-7947-
dc.identifier.issue10-
dc.relation.volume35-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid2158374
dc.contributor.daisngid1363424
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Paz, R
dc.contributor.wosstandardWOS:Monzon, MD
dc.date.coverdateOctubre 2019
dc.identifier.ulpgces
dc.description.sjr0,686
dc.description.jcr2,097
dc.description.sjrqQ2
dc.description.jcrqQ2
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptFabricación integrada y avanzada-
crisitem.author.deptDepartamento de Ingeniería Mecánica-
crisitem.author.deptFabricación integrada y avanzada-
crisitem.author.deptDepartamento de Ingeniería Mecánica-
crisitem.author.orcid0000-0003-1223-7067-
crisitem.author.orcid0000-0003-2736-7905-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.fullNamePaz Hernández, Rubén-
crisitem.author.fullNameMonzón Verona, Mario Domingo-
Appears in Collections:Artículos
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.