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Abstract: 

The optimum scaffold for tissue engineering must guarantee the mechanical integrity in 

the damaged zone and ensure an appropriate stiffness to regulate the cellular function. 

For this to happen, scaffolds must be designed to match the stiffness of the native tissue. 

Moreover, the degradation rate in the case of bioresorbable materials must be also 

considered to fit the tissue regeneration rate. This paper presents a methodology based 

on Design of Experiments, Finite Element Analysis, metamodels and Genetic 

Algorithms to optimize the assignation of material in different sections of the scaffold to 

obtain the desired stiffness over time and comply with the constraints needed. The 

method applies an initial sampling focused on a modified Latin Hypercube strategy to 

obtain data from the simulations. These data are used in the next stages to generate the 

metamodels by using Kriging. The predictions of the metamodels are used by the 

genetic algorithms to find the best estimated solutions. Different runs of the genetic 

algorithm drive the sampling, improving the accuracy of the surrogate models over the 

optimization process. Once the accuracy of the metamodels estimates is sufficient, a 

final genetic algorithm is applied to obtain the optimum design. This approach 

guarantees a low sampling effort and convergence to carry out the optimization process. 

The method allows the combination of discrete and continuous design variables in the 

optimization problem, and it can be applied both in solid and in hierarchical-based 

geometries. 
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1. INTRODUCTION 

Additive Manufacturing (AM) is defined as a “process of joining materials to make 

parts  from 3D model data, usually layer upon layer, as opposed to subtractive 

manufacturing and formative manufacturing methodologies” (ISO/ASTM 52900:2015. 

Additive manufacturing -- General principles –Terminology). The evolution of these 

techniques in the last decades has led to the development of new technologies with 

capability to fabricate customized biodegradable structures suitable for regenerative 

medicine and tissue engineering [1]. In this field, the term “scaffold” is used to define a 

structure that serves as support for the growth of extracellular matrix of the damaged 

tissue. 

 



When designing a scaffold, several requirements must be achieved to success [2,3]. 

First of all, the material must be biocompatible and promote cell function (attachment, 

migration, proliferation, etc.). Secondly, the scaffold must also degrade to allow the 

body cells the production of their own extracellular matrix, thus replacing the scaffold 

over time. Moreover, the resulting products of the degradation process must be non-

toxic and easy-to-remove from the body. All these characteristics can be controlled 

through a suitable selection of materials. On the other hand, the scaffold must have a 

cellular structure with a large volume fraction of interconnected pores. The greater the 

surface of the scaffold, the better the cell adhesion is. However, for some tissues, larger 

pores can reduce the cell aggregations on the scaffold edges [4]. The pore shape and 

size are other important factors [4,5]. According to [6], pore size gradients improve the 

cell seeding efficiency and also achieve a better distribution of cells through the 

scaffold. Regarding the overall scaffold, the first design requirement is the mechanical 

integrity for handling it during surgery. Once the scaffold is placed in the body, its main 

goal is to maintain the microscale mechanical integrity, but its stiffness is also crucial to 

regulate the cellular function [7,8] such as cell differentiation [9] and cell migration. 

While scaffolds with an inappropriate stiffness may frustrate the regeneration process, 

scaffolds with tailored stiffness improve the efficacy of biochemical stimuli [10] since 

cells adjust their internal stiffness to match that of their substrate [11]. For this reason, 

the ideal scaffold must bear the corresponding load and also match the stiffness of the 

native tissue [10]. These tuned scaffolds are difficult to be manufactured with 

conventional fabrication techniques. However, AM can easily reproduce custom-

tailored scaffolds [12], as different geometrical and architectural configurations can be 

easily applied [13] as well as materials. 

 

Different optimization methods have been already applied to optimize porous structures 

for tissue engineering. Hollister et al. [14] proposed an optimization algorithm in which 

the algorithm optimizes the elastic modulus of the material of the scaffold and the 

geometry of the unit cell structure to match the native stiffness. This optimization is 

carried out by assessing two time points and assuming some simplifications: the initial 

time (in which the authors assumed that only the scaffold exists), and the long-term time 

(in which they assumed that only the regenerated tissue is present and it occupies the 

pores of the initial scaffold). On the other hand, the cell geometry consists in a solid 

cube that is intersected by cylindrical pores, creating an interconnected porous structure. 

The algorithm optimizes the diameter of the cylindrical pores, thus having a continuous 

design variable for each Cartesian axis. The method optimizes the diameters and the 

elastic modulus of the material so that the scaffold itself and the regenerated tissue 

match the desired stiffness while maintaining a specific level of porosity. 

 

This method was later improved in [15]. The authors proposed a microstructural 

topology optimization method to obtain the cell unit with the best distribution of 

material to match the desired target stiffness of the cell unit. The method is based on the 

voxel discretization of the cell unit. For each voxel, a density value is applied with 

values from 0 to 1 (0 represents a void and 1 a solid voxel). The density of each element 

defines the contribution to the overall stiffness objective (in the case of values between 

0 and 1, the stiffness is calculated using the solid isotropic microstructure with 

penalization material model [16]). The method optimizes the value of the density of 

each voxel, keeping the porosity within the desired limits. Moreover, the algorithm 

includes a refinement loop so that the finite element mesh (voxels discretization) is 

improved over the iterations. In such a way, the final output will have more resolution, 



achieving the optimal geometry of the cell unit. Despite the clear advantages of 

combining topology optimization with porosity constrains to obtain the desired unit cell 

stiffness, this method has some limitations. Firstly, the optimization may lead to 

complex unit cells that can only be 3D printed with high resolution AM technologies 

such as material jetting or VAT photopolymerization. However, extrusion-based AM 

technologies cannot be applied due to a lower resolution. This is an important drawback 

since extrusion-based techniques are the most promising for regenerative medicine due 

to the higher range of biopolymers that can be processed [17,18]. Apart from this, 

topology optimization can lead to non-interconnected pores, which is a clear 

disadvantage for the cell growth. This is a drawback compared to [14] since the 

orthogonal cylindrical pores ensured the connectivity. On the other hand, the 

optimization algorithm depends on the initial properties of the selected material. This 

means that the method allows the cell unit optimization according to the material 

previously chosen, but it does not optimize the material selection process. On the 

contrary, in [14] the method allowed the optimization of the elastic modulus of the 

scaffold material, but in practice the list of available materials is limited and therefore 

the optimal elastic modulus will probably not be feasible. 

 

Another relevant work related to scaffolds optimization is depicted in [19]. In this work, 

the authors used an evolutionary algorithm to optimize the material assignation of an 

extrusion-based scaffold. They assumed a desired stiffness of the overall scaffold 

(scaffold Young’s modulus) at three different times (early, middle and late) and in two 

different locations along the scaffold. Genetic algorithms (GAs) were applied to 

optimize the material assignation of each strut within the scaffold to achieve that 

stiffness over time. Five different materials were taken into account and the elastic 

modulus of all of them over time was introduced as input data. As the total number of 

struts was 96, each different design proposed by the algorithm (‘individual’ for the 

genetic algorithm) was defined by 96 variables (each variable will represent the material 

of a single strut). Since the optimization was carried out by using a database of 5 

materials, the values of the design variables could vary from 0 to 4 (integer numbers), 

each one representing a different material. The genetic algorithm was coupled with the 

ANSYS software to automatically accomplish the Finite Element Analysis (FEA) of 

each design proposed by the optimization method. The results of the FE analysis at each 

time point were used to assess the ‘fitness function’ of each individual. This fitness 

function is basically calculated as a constant value minus the difference between the 

desired stiffness and the obtained one for the three degradation times and at the two 

locations along the scaffold. Therefore, the objective is to maximize this fitness function 

so that the scaffold achieves the desired stiffness. 

 

The genetic algorithm generates an initial random population of five individuals. This 

low value was selected to be able to accomplish the optimization in a standard 

workstation. Afterwards, these five designs are evaluated by FEA and the results are 

used to calculate the fitness function of each one. Depending on the value, a probability 

of selection is assigned to each individual, so that the fitter designs (compared to the 

desired stiffness at the different degradation times) will have a higher probability. In the 

next step, the five selected individuals are subjected to crossover. This consists in 

selecting two individuals and, by combining them, generate two new ‘offspring’ 

individuals to replace the initial ones. Finally, mutation is randomly applied, thus 

changing one of the design variables of some of the individuals of the new population. 

These steps were repeated in a loop to emulate the natural selection process in the 



nature: the better adapted to an environment will survive and reproduce, so that over 

many generations, the process of natural selection leads to evolution (which, in this 

case, means optimization). 

 

This methodology combines FEA with a powerful searching tool such as genetic 

algorithms, allowing the selection of the ‘best’ combination of materials to achieve the 

desired stiffness. As depicted in the literature [20], the integration of material selection 

within FEA predictions or optimization tools is, without doubts, an important step 

forward in the field of Computer-Aided Tissue Engineering. However, the use of this 

type of evolutionary algorithms requires high computational times. For example, in the 

case study presented in [19], each iteration of the genetic algorithm required the 

simulation of five different designs at three time points, meaning 1500 FE analyses to 

carry out the optimization. This number of simulations may be unfeasible, especially for 

complex problems in which each simulation may take several hours. 

 

A new methodology is presented in the following sections to improve the limitations 

observed in the literature review. 

 

2. METHODS 

2.1. General approach 

 

The methodology presented in this work is based on a previous approach [21] and 

inspired by the work of Heljak et al. [19], reviewed in the previous section. The main 

novelty introduced is the use of metamodels to reduce the computational time needed 

for the evaluation of the fitness function of the individuals generated during the genetic 

algorithm evolution. Figure 1 summarizes this idea. 

 

Metamodels creation and new 
sampling locations based on GAs 

and metamodels predictions

Sampling through design 
of experiments

Final optimization based on GAs 
and metamodels predictions

 
Figure 1. General concept of optimization based on sampling (FEA), metamodels and 

genetic algorithms. 

To accomplish this, a first stage of design of experiments (DOEs) is applied to obtain 

information about the problem. In other words, different designs are evaluated by FEA 

and the results are used to create a database of constraints and objectives according to 

the optimization problem (Figure 2). The number of designs evaluated in this stage will 

be in most of cases ‘3+n’ (being ‘n’ the number of design variables of the optimization 

problem). The DOE applied consists in first evaluating the designs with all the variables 

with the minimum value, all the variables with middle value and all the variables with 

the maximum value. In case that all the design variables are discrete and with only two 

possible values, the middle point is omitted. Afterwards, a modified Latin Hypercube is 

carried out by adding ‘n’ new designs. The location of these points is initially 

determined by a standard Latin Hypercube (‘lhsdesign’ function in MatLab) that divides 

each dimension of the search domain in ‘n’ equal regions and randomly determines the 

location of the first point. The second point is added by avoiding the ‘columns’ and 

‘rows’ of the previous point in the ‘nn’ grid (‘n’ dimensional space) and maximizing the 

minimum distance between points. This is repeated until having added the ‘n’ sampling 



points.  As the ‘lhsdesign’ function works with values between 0 and 1, the sampling 

values previously obtained are adapted to the real search domain by using the limit 

values of each variable. Afterwards, the algorithm checks whether the point is in a 

boundary region of the ‘nn’ grid and in that case, the sampling is moved to the bounds to 

increase the space coverage of the sampling points, thus reducing the extrapolation and 

promoting the interpolation (more accurate) in subsequent stages. This modification to 

the standard Latin Hypercube is also applied for discrete variables with the peculiarity 

that the final value is round to obtain an integer value. 

 

STAGE 1. Design of experiments
 Sampling effort = 3 + n (‘2 + n’ in specific cases)

STAGE 1. Design of experiments
 Sampling effort = 3 + n (‘2 + n’ in specific cases)

FE
A· Designs with minimum, middle and maximum values (3 points) are simulated.

If all the design variables are discrete and only have two possible values, the middle point is ommited 
(‘2+n’ sampling effort)

· Designs proposed by the Modified Latin Hypercube (‘n’ points) are simulated.

 
Figure 2. Flow chart of stage 1 of the optimization methodology. 

With this database, the second stage of the methodology (Figure 3) applies GAs to find 

the best design according to the desired objective. However, before the running of the 

GA, a Kriging metamodel is generated (using the data previously obtained) for each 

constraint and objective of interest (e.g. stiffness, safety factor, etc.). Once the 

metamodels are created from the simulated database, they can be used to predict the 

results of any design without performing the FEA. This capability is used within the 

GAs to evaluate the fitness function of each individual without carrying out FEA 

simulations. Therefore, the computational time can be significantly reduced compared 

to the reference work [19]. Moreover, the parameters of the GA such as the population 

size can be easily modified to guarantee the convergence and without significant 

changes in the computational time since the fitness function evaluation is calculated 

from the estimates of the metamodels, not from the FEA results. Using this concept, the 

methodology takes advantage of a GA to find the best design according to the 

metamodel estimations. The best design is then simulated by FEA and the results are 

added to the database so that in the next iteration, the metamodels will be updated with 

the new data, thus improving their accuracy over the optimization process. Note that in 

the first ‘n’ iterations of the second stage, a proximity penalty is applied in the fitness 

function evaluation when the individuals are too close to the already existing data. The 

aim of this penalty is to avoid the evolution of the GA towards locations that has been 

already explored, thus encouraging a more uniformly distributed sampling across the 

search domain. More details will be explained in section 2.4. The predicted and 

simulated values are also compared in the final iterations of the second stage to assess 

the accuracy of the metamodel. Therefore, the estimation error is used as a control 

parameter to proceed or not to the final stage of the methodology. If the main absolute 

percentage error (MAPE) of the predicted objectives and constraints (compared to the 

FEA results) is higher than 5%, another iteration is applied. 
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Figure 3. Flow chart of stage 2 of the optimization methodology. 

 

Once the MAPE of the metamodels predictions is lower than 5%, the final phase of the 

algorithm is accomplished (Figure 4). This consists in applying a GA combined with the 

updated metamodels to predict the fitness function values. The optimum predicted by 

the GA and metamodels is simulated by FEA and if it improves the best design 

achieved in previous stages, it will be considered the optimum. Otherwise, the algorithm 

updates the metamodels with the last design simulated and repeats the process in a loop 

until the optimum is achieved. Moreover, if this final stage applies more than ‘5+n’ 

attempts without success in the improvement of the previous optimum, then this 

previous optimum will be considered the final optimum design. 
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Figure 4. Flow chart of stage 3 of the optimization methodology. 

 

Although this methodology is based on the proposal depicted in [21], some significant 

modifications were implemented to be able to deal with different time points, material 

assignation, user-defined objective functions and other requirements needed for this 

specific application. For example, in [21] the GAs were coded for continuous variables, 

whereas in this case the variables can be continuous, discrete or a combination of both. 

Moreover, the design variables reserved for material assignation are not associated with 

design variables of the CAD model, but material properties that must be applied to the 

solids in the FEA. Therefore, the internal workflow to manage these variables is 

different. The following sections explain the main implementations and parameters used 

in the methodology and GAs to provide the required features for this specific 

application. 

 

 

2.2.Data input 

 

The methodology has been implemented within SolidWorks 2016 software by using the 

Application Programming Interface. After running the code, the main window asks for 

the output directory and file name, the number of design variables (‘n’, which will be 

used to determine the sampling effort in the different stages of the algorithm), the 

number of discrete design variables, the number of discrete design variables to assign 

materials, the number of materials, the number of time points for the degradation 

process, the number of constraints for the optimization definition, the number of studies 

(to apply different analysis if needed), the number of configurations (to assess different 



shapes of a unique design, mainly useful for 4D printing optimization [21]) and the 

number of desired runs to repeat the same optimization process many times (useful to 

compare the results and analyze the behavior of the optimization methodology). 

According to the code structure, the continuous design variables must be the first to be 

defined, while the discrete variables for material assignation must be the last ones. Also, 

note that the discrete variables can include discrete variables associated with the CAD 

design (e.g. number of instances in a matrix operation), or discrete variables for material 

assignation. In that case, the variables reserved for material assignation must be always 

defined at the end. On the other hand, the code is prepared to deal with discrete 

variables defined as integer numbers with 1 unit step between values. 

 

Afterwards, the material properties (elastic modulus, Poisson’s ratio, yield strength and 

density for each material and for each time point), upper and lower limits of each design 

variable, limits and feasible zone of the optimization constraints, mesh element size for 

each analysis, number of objective sensors, definitions of the objective function and 

associated analysis of each objective sensor (each sensor will be associated to a unique 

FE analysis) are required. 

 

 

2.3.Flow chart of the FEA 

 

The FEA of each different design requires several steps that are summarized in Figure 

5. First of all, the global variables related to the CAD model are updated in the equation 

manager in SolidWorks. Afterwards, the geometry is updated if any of these variables 

has been changed. Subsequently, several steps are applied for each analysis. Note that 

the methodology is prepared to work with different analysis that can provide 

information needed for the optimization problem (constraints or objectives). The first 

step for each analysis is to create the mesh with the element size dimension introduced 

during the input data request. In the case that the geometry has not been modified, the 

mesh generation is not needed as it was already created in the previous design. 

Subsequently, for each degradation time, the following steps are carried out: 

- In the case of having design variables reserved for material assignation, the 

methodology allocates the material properties to each solid. For example, if 

design variable 1 (reserved for the material assignation of solid 1) is ‘4’, then the 

mechanical properties of material 4 (at the corresponding time point), introduced 

in the data input, are assigned to this solid. 

- The methodology runs the analysis. 

- Once the FEA analysis is completed, the results obtained in the constraints and 

objectives sensors are stored. 

Once these steps are carried out for all the degradation times, the methodology assesses 

the fitness function of the design evaluated by using the objective function introduced in 

the data input. Moreover, a penalty is applied for each unfulfilled constraint. Section 

2.5.2 will give more details about this. 



FEA
Simulation and storage of the sensors results

Update of global variables
Global variables update in the equation manager in SolidWorks 

(except those variables reserved for material assignation)

Mesh generation
Definition of the finite element mesh according to the 

element size defined in the input data (only if the geometry 
was modified)

Geometry update
In case of modifications in the geometry, CAD model update

For each analysis:
In case of several analysis to obtain the objectives and 
constraints, apply the following steps for each analysis

For each degradation time:
Apply the following steps for each degradation time

Assignation of material properties
In case of existing design variables for material 

assignation, the code assigns the corresponding material 
properties (at the pertinent degradation time) to each 

solid of the CAD model

Run of the FEA
The simulation is carried out

Storage of results
The results get by the constraints and objectives sensors 

are stored to be used for the optimization algorithm

Fitness function evaluation
The results obtained by the sensors after the simulations are 

stored to be used for the optimization algorithm
 

Figure 5. Flow chart of the steps carried out during the FEA of each design. 

 

 

2.4.Kriging metamodels 



 

The Kriging method is used to predict the results within the GAs from the available data 

of the FEA. This interpolation/extrapolation method was implemented in the 

methodology through the MatLab Kriging Toolbox developed by Lophaven et al. [22]. 

The generalized exponential correlation model was selected since it is the most 

commonly used when the spatial correlation between data is unknown. Regarding the 

regression model, this toolbox allows the usage of a polynomial function from 2 to 0-

order. Taking into account that the highest the order, the more accurate the predictions 

are, the methodology attempts to first create the 2-order metamodel and if it fails, it will 

progressively reduce the order until the metamodel is created. With this strategy, the 

highest possible order of regression model (according to the available data) is always 

applied. 

 

 

2.5.Genetic algorithms 

 

The stages of the genetic algorithms applied in this work are summarized in Figure 6. 

The main parameters used are explained in the following sections. 
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Figure 6. Flow chart of the genetic algorithms used in this work. 

 

 



2.5.1. Population size and number of generations 

 

The population size was fixed in 100 individuals and the number of generations in 100. 

Therefore, each GA evolution requires the evaluation of a total of 10000 individuals. 

Thanks to the use of metamodels, the evolution of each GA with 10000 individuals 

requires just a few seconds in a workstation with an Intel® CoreTM i-5-6300HQ 

Processor @ 2.3GHz. 

 

2.5.2. Initial fitness function evaluation 

 

The fitness function is obtained from the definition of the objective function and the 

addition of some penalty terms. 

 

The objective function can be user-defined according to the optimization problem, but it 

is necessary to follow a specific nomenclature. The pre-processing of the FEA model 

requires the definition of sensors to read the desired values from the simulation results 

(e.g. maximum displacement). Depending on the nature of the sensor for the 

optimization problem, it will be defined as ‘objective’ or ‘constraint’. Several objective 

and constraint sensors can be declared, each one with its corresponding identifier 

(integer values starting from 1). Therefore, in the objective function definition, the 

values of the objectives sensors will be declared as ‘obj(j,m)’, being ‘j’ the identifier of 

the objective sensor and ‘m’ the time point (both integer values). Section 3 will show 

more details about the objective function definition through a case study. 

 

Apart from the free definition of the objective function in the corresponding prompt 

window, the user must also specify if the objective must be maximized or minimized by 

selecting the appropriate option button. Some penalty terms (positive for minimization 

problems and negative for maximization) are automatically added to the objective value 

to assess the fitness function. This happens when the designs do not comply with the 

optimization constraints. 

 

On the other hand, note that the fitness function within the GAs is evaluated by using 

the estimated results of the objectives and constraints (through the metamodels). 

Moreover, in the second stage of the proposed methodology, a proximity penalty is 

applied in the first ‘n’ iterations (Figure 3). The aim of this penalty is to worsen the 

fitness function value of those individuals close to points already simulated. 

Consequently, the GAs will converge towards solutions away from the existing 

sampling points. When this concept is applied in several GA runs, the result is a well-

distributed sampling across the search domain and in locations of interest according to 

the metamodels predictions. Therefore, this concept allows an efficient selection of the 

sampling points to improve the accuracy of the metamodels in areas with potential to be 

the location of the optimum design. To apply this, first a radius of influence is defined. 

Afterwards, the distance between each individual of the GA and the already existing 

sampling points is calculated. If the distance between the individual and any of the 

sampling points is lower than the radius of influence, the proximity penalty will be 

applied to penalize the fitness function of the individual. The mathematic details of this 

concept are depicted in [21] and the idea was based in on the resource sharing method 

used in multimodal optimization [23], where the fitness function value of each 

individual is reduced according to the number of individuals sharing the same search 

space (resource sharing). 



 

The fitness function is also evaluated for each design simulated by FEA to show, at the 

end of the process, the quality of the designs that were actually evaluated by FEA. 

 

 

2.5.3. Tournament selection 

 

The tournament selection consists in creating an intermediate population by selecting 

two random individuals of the population and comparing the fitness function value. The 

best one is stored in the intermediate population. This is repeated 100 times to obtain 

100 individuals in the intermediate population. 

 

2.5.4. Crossover 

 

The crossover is applied with 50% of probability. Half of the intermediate population is 

randomly preselected and combined to obtain offspring, while the other half is 

maintained. To carry out the crossover, two random individuals belonging to the 

previous group are selected. Afterwards, a random value ‘α’ (between -0.5 and 1.5) is 

generated and the two offspring are obtained as an arithmetic average of the two 

parents, using ‘α’ and ‘1- α ‘ as the weight of each parent: 

 

𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔1 =  𝛼 ·  𝑃𝑎𝑟𝑒𝑛𝑡1 + (1 − 𝛼) · 𝑃𝑎𝑟𝑒𝑛𝑡2 

𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔2 =  𝛼 ·  𝑃𝑎𝑟𝑒𝑛𝑡2 + (1 − 𝛼) · 𝑃𝑎𝑟𝑒𝑛𝑡1 

 

These previous equations are used for each continuous variable. For the discrete 

variables, the crossover operator is different. A random value is generated (0~1) and if 

the value is lower than or equal to 0.5, ‘Offspring1’ will take the value of ‘Parent1’ and 

‘Offspring2’ will take the value of ‘Parent2’.  However, if the random value is higher 

than 0.5, ‘Offspring1’ will take the value of ‘Parent2’ and ‘Offspring2’ will take the 

value of ‘Parent1’. 

 

2.5.5. Mutation 

 

The mutation probability was fixed in 60%. For each individual of the resulting 

population, a random value is generated (0~1). If this value is lower than or equal to 

0.6, the individual will mutate. The mutation consists in selecting a random gene of the 

chromosome (a random design variable) and slightly modifying the current value by 

adding the result of a random value between -0.5 and 0.5 multiplied by the maximum 

interval of that design variable: 

 

𝑀𝑢𝑡𝑎𝑡𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒 + (𝑈𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 − 𝐿𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡) · 𝑅𝑎𝑛𝑑𝑜𝑚 

𝑅𝑎𝑛𝑑𝑜𝑚 = (−0.5~0.5) 

 

In the case of discrete variables, the concept is the same but a round operation is applied 

to obtain an integer value. 

 

Finally, a reparation loop is applied in the individuals that have been mutated. This 

consists in assessing if any of the design variables has exceeded the initial bounds. If 

this happens, the algorithm modifies the value to the nearest limit. 

 



2.5.6. Fitness function evaluation 

 

The fitness function is evaluated again following the same procedure explained in 

section 2.4.2.  

 

The fitness function is also evaluated for each design simulated by FEA to show, at the 

end of the process, the quality of the designs that were actually evaluated by FEA. 

 

2.5.7. Ranking and elitism application 

 

In the last step of the GA, the fitness function of the resulting population is evaluated 

(through the Kriging metamodels) and sorted to replace the worst individual by the best 

of the previous generation (elitism). 

 

Sections 2.4.3 to 2.4.6 are repeated in a loop until generation 100 is reached. The best 

design of the last population will be the optimum that will be simulated. 

 

2.6.Workflow and software used 

 

The methodology was developed in Visual Basic for Applications, which is one of the 

codes available for SolidWorks 2016 Application Programming Interface. Before 

running the code, the user must define the geometry, create the appropriate 

parameterization (link between design dimensions of the model and design variables 

represented by global variables in the equation manager) and define the sensors and 

analyses that will be considered in the optimization process. Once this preprocessing is 

ready, the optimization can be run. The code automatically opens a MatLab Windows 

Application to communicate during the optimization, since several tasks such as array 

sorting or metamodels generation/evaluation are carried out in MatLab. 

 

3. CASE STUDY 

 

A case study was carried out to test the methodology. The case study consisted in a 

10mm diameter by 10mm height scaffold, under 1000N compression load. To facilitate 

the simulation and accuracy on the definition of the boundary conditions, double 

symmetry was applied. Therefore, the load applied in the model was 250N and the 

displacements normal to the planes of symmetry were constrained in the symmetry 

faces. Additionally, the displacements of the bottom face were also constrained in the 

vertical direction. The model was divided into 12 different sections of 0.8mm thickness, 

except the top one, with 1.2mm thickness (multiples values of 0.4mm, which is the 

layer thickness for the 3D printing). For each section, a design variable was applied for 

material assignation (Figure 7), leading to a total of 12 design variables (all of them 

discrete variables). On the other hand, 3 time points and a database with 5 different 

materials were considered for this case study. The elastic modulus and yield strength of 

the 5 materials (at the different time points) are depicted in Table 1. The Poisson’s ratio 

was fixed in 0.3 for all the materials and time points. Note that the model is represented 

as a solid material, which means that the mechanical properties introduced would be 

associated with to the bulk properties of porous scaffolds. Therefore, the materials 

database may include examples with the same raw material but with different 



configurations (infill strategies, layer height, etc.), thus leading to different mechanical 

properties. 

 

The curvature based mesher was used with a maximum and minimum element size of 

0.4 and 0.08mm (respectively) and a 1.5 element size growth ratio. Two-order 

tetrahedral elements were used. The resulting mesh had 34092 elements and 48596 

nodes, with a maximum aspect ratio of 3.7. 

 

The objective of the optimization is to achieve the stiffness over time depicted in Table 

2 both for points 1 and 2 (see Figure 7). These values of stiffness of the overall scaffold 

were translated into displacements of the model. They are also depicted in Table 2. The 

restriction of the optimization problem is to avoid plastic deformation of the materials at 

any time point. Therefore, the safety factor must be higher than 1 in the entire model. 

Two objective sensors were defined in the analysis (Objective 1 and Objective 2, 

respectively) to read the displacements in points 1 and 2. Another sensor was also added 

to get the maximum safety factor (Yield stress / Maximum Von Mises stress) of the 

model (Restriction 1). 

 

 
Figure 7. Model used for the optimization. 

 

Table 1. Database of material properties at the different time points evaluated. 
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Table 2. Desired stiffness over time in points 1 and 2 of the scaffold. 

 Desired stiffness 

at Point 1 (N/mm) 

Objective 1 

(mm) 

Desired stiffness 

at Point 2 (N/mm) 

Objective 2 

(mm) 

Time 1 1818.18 0.55 2222.22 0.45 

Time 2 1538.46 0.65 1818.18 0.55 

Time 3 1111.11 0.9 1333.33 0.75 

 

To minimize the difference between the desired displacements over time and the 

obtained ones, the objective function is defined as the quadratic error between them, so 

that the objective is to minimize this quadratic error. Therefore, the optimization 

problem can be defined as follows: 

 

𝑴𝒊𝒏 𝐹 = (𝑜𝑏𝑗(1,1) − 0.55)2  +  (𝑜𝑏𝑗(1,2) − 0.65)2 + (𝑜𝑏𝑗(1,3) − 0.9)2  + 
     +(𝑜𝑏𝑗(2,1) − 0.45)2  +  (𝑜𝑏𝑗(2,2) − 0.55)2  +  (𝑜𝑏𝑗(2,3) − 0.75)2  + 𝑃𝑒𝑛𝑎𝑙𝑡𝑖𝑒𝑠 

 

𝑪𝒐𝒏𝒔𝒕𝒓𝒂𝒊𝒏𝒆𝒅 𝒕𝒐:                              𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛 1 (𝑆𝑎𝑓𝑒𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟)  >  1 𝑎𝑡 𝑎𝑛𝑦 𝑡𝑖𝑚𝑒 

 

Where “obj(j,m)” represents the value of sensor “Objective j” (displacement in point ‘j’) 

at time point “m”. Therefore, the objective is to minimize the difference between the 

achieved and the desired displacement for points 1 and 2 and at time points 1-3. By 

minimizing the previous expression, the optimum design will achieve the desired 

stiffness (approximately) over time in points 1 and 2. Note that the fitness function has a 

penalty term that is applied when the safety factor is lower or equal to 1. 

 

Since the methodology is based on a stochastic method that can lead to different 

solutions, the optimization was carried out 30 times to assess the convergence of the 

methodology. 

4. RESULTS 

 

The first optimization run was completed in 26min after the evaluation of 34 different 

designs. The optimum design was the last one (design 34), having the combination of 

materials depicted in Figure 8 and a fitness function value of 0.0043. Table 3 shows the 

results of the restriction and objectives sensors of the optimum and Figure 9 the 

comparison between the desired and the obtained values of the objectives.   

 



 
Figure 8. Optimum design of run 1. 

Table 3. Objectives and restriction of the optimum design of run 1. 

 
Objective 1 (mm) Objective 2 (mm) Restriction 1 

Time 1 
0.5354 

(desired=0.55) 

0.4274 

(desired=0.45) 

1.4332 

(>1) 

Time 2 
0.6424 

(desired=0.65) 

0.5209 

(desired=0.55) 

1.2702 

(>1) 

Time 3 
0.9393 

(desired=0.9) 

0.7841 

(desired=0.75) 

1.1806 

(>1) 
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Figure 9. Comparison between the objectives obtained by the optimum of run 1 and the 

desired objective values. 

 

Figure 10 shows the value of the fitness function of the designs evaluated during the 

optimization. Designs 15, 17 and 30 had higher values because the restriction was not 

complied due to a safety factor lower than 1 at time 3. This graph was zoomed in to 

visualize the smallest values of the fitness function (Figure 11). The first 15 designs 

were evaluated during stage 1 of the algorithm, designs 16-28 during stage 2 and 

designs 29-34 in stage 3. In this case, 6 attempts were needed in stage 3 to improve the 

best design of the previous phases (in this case obtained in stage 1). 

 
Figure 10. Fitness function of the designs evaluated during run 1. 
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Figure 11. Detail of the fitness functions of run 1 (between 0 and 0.05). 

The fitness function of the optimum and the optimization time of the 30 runs are shown 

in Figure 12. 

 

 
Figure 12. Fitness functions of the optimum and optimization time of the 30 runs. 

 

5. DISCUSSION 

 

The results of the 30 runs were statistically treated to assess the quality of the optimum. 

First of all, a box-plot was determined for the fitness function values of the 30 

optimums, the safety factor (restriction) of the 30 optimums, the number of designs 

evaluated during the 30 runs, and the optimization time of each run (Figure 13). For the 

safety factor (SF), the average value of the 3 times was calculated for each optimum. It 

can be observed that there are no outliers, which means that the methodology converges 

0

10

20

30

40

50

60

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930

O
p

ti
m

iz
at

io
n

 t
im

e
 (

m
in

)

Fi
tn

e
ss

 f
u

n
ct

io
n

 o
f 

th
e

 o
p

ti
m

u
m

Number of run

Fitness function of the optimum Optimization time (min)



always to similar results. To statistically confirm this, first a Jarque-Bera test with 1% 

significance level was performed for each variable group of Figure 13 to assess the 

normality of the data. The Jarque-Bera tests concluded that the data came from a normal 

distribution (with an unknown mean and variance). Once the normality was confirmed, 

the average and sample standard deviation (SD) of the 30 samples were calculated 

(Table 4). Subsequently, the mean values were used to perform a one sample t-Test for 

each parameter (fitness function, SF, number of designs evaluated and optimization 

time) with a 1% significance level. For all the cases, the t-tests did not reject the null 

hypothesis that the data comes from a normal distribution with mean equal to the value 

previously calculated and unknown variance. Therefore, it was statistically proved that 

the methodology converges to similar results despite its stochastic nature. 

 

 
Figure 13. Box-plots of the fitness function, safety factor (average at 3 time points), 

number of designs evaluated and optimization time. 

Table 4. Mean values of the fitness function and SF (average at 3 time points) of the 30 

optimums, and number of designs evaluated and optimization time of the 30 runs. 

 Fitness 

function 

SF average 

(at 3 times) 

No. designs 

evaluated 

Optimization 

time (min) 

Mean 0.0038 1.18 43.27 35.04 

Sample SD 0.0019 0.09 7.37 6.96 

 

Although this process enables the optimization of the material assignation taking into 

account the biomaterial degradation, it is needed an important database of material 

properties over time. To obtain this material database, mechanical tests at different 

degradation times should be carried out for different materials and scaffold 

configurations (infill strategies, layer height, etc.). On the other hand, different 



simulation approaches or models could be also useful to estimate the mechanical 

properties over time and use the bulk properties as an input for this methodology. For 

example, in [24] the authors used a degradation model based on the loss of the 

molecular weight caused by hydrolysis, thus leading to reduced mechanical properties. 

 

In this paper, a simplified solid 3D model has been used by applying the appropriate 

bulk properties in the different solid sections. Another option would be to model the 

hierarchical structure of the deposited filaments so that the bulk properties were not 

needed and therefore the amount of experimental tests could be drastically reduced. In 

this sense, the simplest approach could consist in drawing cylinders without considering 

the real path of the extrusion head, but with the appropriate porous density, as it was 

done in [19]. In this reference, the material of every single strut was optimized. 

However, this concept may not be feasible in practice as the material would have to be 

changed several times within every layer during the 3D printing. A more realistic 

approach could be to assign different materials to different layers, which is easier to 

implement in practice. In any case, the optimization methodology presented in this work 

could handle this approach since the concept is the same as the one applied in the case 

study. Some authors have proposed other methods [25,26] based on progressive element 

activation to generate the 3D printed geometry. These methods consist in dividing the 

geometry into voxels/elements and carrying out an activation of dormant voxels 

depending on the nozzle movements, so that only the voxels close to the nozzle during 

the printing are activated. This concept allows a more precise definition of the deposited 

geometry, but the generation of the deposited geometry can be very demanding in terms 

of CPU time, as well as the meshing and solving of the finite element analysis. In any 

case, the presented optimization methodology could be also applied to this type of 

geometries, especially if there are no variable associated with the design. In that case, 

these modelling techniques would have to be implemented in the proposed optimization 

methodology to tackle the optimization problem. 

 

6. CONCLUSIONS 

 

A new optimization methodology based on DOE, FEA, metamodels and GAs has been 

presented for the material assignation in scaffolds. This methodology allows the 

determination of the best combination of materials (from a database) to achieve the 

desired mechanical properties (such as stiffness) over degradation time. The 

methodology applies an initial DOEs to obtain data from the simulations and these data 

are used in the next stages to generate the Kriging metamodels. These metamodels are 

used to evaluate the fitness function of the designs proposed by the GAs. With this 

approach, the optimum search within the GAs is carried out without performing FEA, 

thus reducing the CPU time required for the optimum search. In addition, the second 

stage of the optimization algorithm includes some techniques to explore new areas of 

the search domain and to improve the metamodels accuracy. In fact, the final stage is 

only reached once a certain level of accuracy is achieved. 

 

As demonstrated in the case study, this approach guarantees a low sampling effort to 

find the optimum design, which is especially interesting in the case of complex designs 

with complex FEA associated. Regarding the convergence of the methodology, the 

statistical analysis carried out revealed that the optimums were not different between 

them. Therefore, the methodology leads to similar designs despite the stochastic nature 



of the Latin Hypercube and GAs. Moreover, the methodology can deal with both 

continuous and discrete variables, which allows not only the optimization of the 

material assignation, but also the optimization of continuous variables related to 

dimensions of the scaffold. On the other hand, the method can be applied both in solid 

and in hierarchical-based geometries since the concept is the same. In the case of solid 

geometries, an important database of mechanical properties over degradation time is 

required for different materials and printing configurations (infill density, infill strategy, 

layer height, etc.). Moreover, the methodology also has potential to be combined with 

novel modelling techniques based on element activation, although further research 

should be accomplished for this purpose. 
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