Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/69315
DC FieldValueLanguage
dc.contributor.authorVega-Fuentes, E.en_US
dc.contributor.authorDenai, M.en_US
dc.date.accessioned2020-01-24T10:01:09Z-
dc.date.available2020-01-24T10:01:09Z-
dc.date.issued2019en_US
dc.identifier.issn2169-3536en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/69315-
dc.description.abstractElectric vehicles (EV) have gained global attention due to increasing oil prices and rising concerns about transportation-related urban air pollution and climate change. While mass adoption of EVs has several economic and environmental benefits, large-scale deployment of EVs on the low-voltage (LV) urban distribution networks will also result in technical challenges. This paper proposes a simple and easy to implement single-phase EV charging coordination strategy with three-phase network supply, in which chargers connect EVs to the less loaded phase of their feeder at the beginning of the charging process. Hence, network unbalance is mitigated and, as a result, EV hosting capacity is increased. A new concept, called Maximum EV Hosting Capacity (HCmax) of low voltage distribution networks, is introduced to objectively assess and quantify the enhancement that the proposed phase-shifting strategy could bring to distribution networks. The resulting performance improvement has been demonstrated over three real UK residential networks through a comprehensive Monte Carlo simulation study using Matlab and OpenDSS tools. With the same EV penetration level, the under-voltage probability was reduced in the first network from 100% to 54% and in the second network from 100% to 48%. Furthermore, percentage voltage unbalance factors in the networks were successfully restored to their original values before any EV connection.en_US
dc.languageengen_US
dc.relationCatedra Endesa Reden_US
dc.relation.ispartofIEEE Accessen_US
dc.sourceIEEE Access [ISSN 2169-3536], v. 7, p. 46796-46807en_US
dc.subject3306 Ingeniería y tecnología eléctricasen_US
dc.subject.otherCapacityen_US
dc.subject.otherElectric vehicleen_US
dc.subject.otherLow-Voltage Networksen_US
dc.titleEnhanced Electric Vehicle Integration in the UK Low-Voltage Networks With Distributed Phase Shifting Controlen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/ACCESS.2019.2909990en_US
dc.identifier.scopus85065022626-
dc.identifier.isi000466703300001-
dc.contributor.authorscopusid56486013300-
dc.contributor.authorscopusid24723937500-
dc.description.lastpage46807en_US
dc.description.firstpage46796en_US
dc.relation.volume7en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid29888065-
dc.contributor.daisngid876346-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Vega-Fuentes, E-
dc.contributor.wosstandardWOS:Denai, M-
dc.date.coverdate2019en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr0,775
dc.description.jcr3,745
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.project.principalinvestigatorDéniz Quintana, Fabian Alberto-
crisitem.author.deptGIR IUMA: Sistemas de Información y Comunicaciones-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Eléctrica-
crisitem.author.orcid0000-0002-9194-5119-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameVega Fuentes, Eduardo-
Appears in Collections:Artículos
Thumbnail
Enhanced Electric Vehicle Integration in the UK Low-Voltage Networks With Distributed Phase Shifting Control
Adobe PDF (9,83 MB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.