Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/6879
Title: | Potential respiration is a better respiratory predictor than biomass in young Artemia salina | Authors: | Martínez, I. Gomez, M. Packard, T. T. |
UNESCO Clasification: | 251001 Oceanografía biológica | Keywords: | Artemia salina ETS activity Biomass Potential respirationa Respiration |
Issue Date: | 2010 | Journal: | Journal of Experimental Marine Biology and Ecology | Abstract: | These experiments test whether respiration can be predicted better from biomass or from potential respiration, a measurement of the mitochondrial and microsomal respiratory electron transport systems. For nearly a century Kleiber's law or a similar precursor have argued the importance of biomass in predicting respiration. In the last decade, a version of the Metabolic Theory of Ecology has elaborated on Kleiber's Law adding emphasis to the importance of biomass in predicting respiration. We argue that Kleiber's law works because biomass packages mitochondria and microsomal electron transport complexes. On a scale of five orders of magnitude we have shown previously that potential respiration predicts respiration aswell as biomass inmarine zooplankton. Here, using cultures of the branchiopod, Artemia salina and on a scale of less than 2 orders of magnitude,we investigated the power of biomass and potential respiration in predicting respiration.We measured biomass, respiration and potential respiration in Artemia grown in different ways and found that potential respiration (Ф) could predict respiration (R), both in μlO2h−1 (R=0.924Φ+0.062, r2=0.976), but biomass (as mg dry mass) could not (R=27.02DM+8.857, r2=0.128). Furthermore the R/Ф ratio appeared independent of age and differences in the food source. | URI: | http://hdl.handle.net/10553/6879 | ISSN: | 0022-0981 | DOI: | 10.1016/j.jembe.2010.05.011 | Source: | Journal of Experimental Marine Biology and Ecology [ISSN 0022-0981], v. 390, p. 78-83 |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
13
checked on Dec 8, 2024
WEB OF SCIENCETM
Citations
13
checked on Dec 8, 2024
Page view(s)
139
checked on Aug 10, 2024
Download(s)
290
checked on Aug 10, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
This item is licensed under a Creative Commons License