Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/63297
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Mendonça, Fabio | en_US |
dc.contributor.author | Mostafa, Sheikh Shanawaz | en_US |
dc.contributor.author | Morgado-Dias, Fernando | en_US |
dc.contributor.author | Ravelo García, Antonio Gabriel | en_US |
dc.contributor.author | Penzel, Thomas | en_US |
dc.date.accessioned | 2020-01-21T13:11:14Z | - |
dc.date.available | 2020-01-21T13:11:14Z | - |
dc.date.issued | 2019 | en_US |
dc.identifier.issn | 0967-3334 | en_US |
dc.identifier.other | WoS | - |
dc.identifier.uri | http://hdl.handle.net/10553/63297 | - |
dc.description.abstract | Objective: The term sleep quality is widely used by researchers and clinicians despite the lack of a definitional consensus, due to different assumptions on quality quantification. It is usually assessed using subject self-reporting, a method that has a major limitation since the subject is a poor self-observer of their sleep behaviors. A more precise method requires the estimation of physiological signals through polysomnography, a procedure that has high costs, is uncomfortable for the subjects and it is unavailable to a large group of the world population. To address these issues, a sleep quality prediction method was developed based on the analysis of the cyclic alternating pattern rate estimated using a single-lead electrocardiogram. Approach: The algorithm analyzes the causality, entropy of the variability and connection of respiratory volume and the N-N interbeat intervals as features for a classifier to assess the cyclic alternating pattern and non-rapid eye movement periods. This information was then combined to estimate the cyclic alternating pattern rate and define the quality of sleep by considering the age-related cyclic alternating pattern rate percentages as a reference threshold. Main results: The best results were achieved using a deep stacked autoencoder as a classifier and employing the minimal-redundancy-maximal-relevance as feature selection algorithm. Data collected from three databases and one hospital were used for training and testing the algorithms, achieving an average accuracy of, respectively, 76% and 77% for the cyclic alternating pattern and non-rapid eye movement sleep classification. The predicted sleep quality achieved a high agreement when considering either the cyclic alternating pattern rate, the arousal index, apnea-hypopnea index or the sleep efficiency as quantification for sleep quality. A moderate correlation was achieved with the Epworth sleepiness score and Pittsburgh sleep quality index. Total sleep time presented a higher variation on the correlation analysis. Significance: The developed method is capable of estimating the sleep quality and is characterized by a low intra-individual variability. It only requires a small number of sensors that can easily be self-assembled, and could possibly lead to new developments in sleep quality estimation by home monitoring devices. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Physiological Measurement | en_US |
dc.source | Physiological Measurement[ISSN 0967-3334],v. 40 (10) | en_US |
dc.subject | 6105 Evaluación y diagnóstico en psicología | en_US |
dc.subject.other | Sleep quality | en_US |
dc.subject.other | CAP rate | en_US |
dc.subject.other | Single-lead ECG | en_US |
dc.title | Sleep quality of subjects with and without sleep-disordered breathing based on the cyclic alternating pattern rate estimation from single-lead ECG | en_US |
dc.type | info:eu-repo/semantics/Article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1088/1361-6579/ab4f08 | |
dc.identifier.scopus | 85074446008 | |
dc.identifier.isi | 000495636400005 | - |
dc.contributor.authorscopusid | 57211802910 | |
dc.contributor.authorscopusid | 55489640900 | |
dc.contributor.authorscopusid | 57200602527 | |
dc.contributor.authorscopusid | 9634135600 | |
dc.contributor.authorscopusid | 7005360676 | |
dc.identifier.eissn | 1361-6579 | - |
dc.identifier.issue | 10 | - |
dc.relation.volume | 40 | - |
dc.investigacion | Ciencias de la Salud | en_US |
dc.type2 | Artículo | en_US |
dc.contributor.daisngid | 6442981 | |
dc.contributor.daisngid | 4069296 | |
dc.contributor.daisngid | 1189663 | |
dc.contributor.daisngid | 1986395 | |
dc.contributor.daisngid | 31852370 | |
dc.utils.revision | Sí | en_US |
dc.contributor.wosstandard | WOS:Mendonca, F | |
dc.contributor.wosstandard | WOS:Mostafa, SS | |
dc.contributor.wosstandard | WOS:Morgado-Dias, F | |
dc.contributor.wosstandard | WOS:Ravelo-Garcia, AG | |
dc.contributor.wosstandard | WOS:Penzel, T | |
dc.date.coverdate | Octubre 2019 | |
dc.identifier.ulpgc | Sí | es |
dc.description.sjr | 0,702 | |
dc.description.jcr | 2,309 | |
dc.description.sjrq | Q2 | |
dc.description.jcrq | Q3 | |
dc.description.scie | SCIE | |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.orcid | 0000-0002-8512-965X | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.fullName | Ravelo García, Antonio Gabriel | - |
Colección: | Artículos |
Citas SCOPUSTM
6
actualizado el 30-mar-2025
Citas de WEB OF SCIENCETM
Citations
6
actualizado el 30-mar-2025
Visitas
66
actualizado el 09-dic-2023
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.