Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/handle/10553/63297
DC FieldValueLanguage
dc.contributor.authorMendonça, Fabioen_US
dc.contributor.authorMostafa, Sheikh Shanawazen_US
dc.contributor.authorMorgado-Dias, Fernandoen_US
dc.contributor.authorRavelo García, Antonio Gabrielen_US
dc.contributor.authorPenzel, Thomasen_US
dc.date.accessioned2020-01-21T13:11:14Z-
dc.date.available2020-01-21T13:11:14Z-
dc.date.issued2019en_US
dc.identifier.issn0967-3334en_US
dc.identifier.otherWoS-
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/63297-
dc.description.abstractObjective: The term sleep quality is widely used by researchers and clinicians despite the lack of a definitional consensus, due to different assumptions on quality quantification. It is usually assessed using subject self-reporting, a method that has a major limitation since the subject is a poor self-observer of their sleep behaviors. A more precise method requires the estimation of physiological signals through polysomnography, a procedure that has high costs, is uncomfortable for the subjects and it is unavailable to a large group of the world population. To address these issues, a sleep quality prediction method was developed based on the analysis of the cyclic alternating pattern rate estimated using a single-lead electrocardiogram. Approach: The algorithm analyzes the causality, entropy of the variability and connection of respiratory volume and the N-N interbeat intervals as features for a classifier to assess the cyclic alternating pattern and non-rapid eye movement periods. This information was then combined to estimate the cyclic alternating pattern rate and define the quality of sleep by considering the age-related cyclic alternating pattern rate percentages as a reference threshold. Main results: The best results were achieved using a deep stacked autoencoder as a classifier and employing the minimal-redundancy-maximal-relevance as feature selection algorithm. Data collected from three databases and one hospital were used for training and testing the algorithms, achieving an average accuracy of, respectively, 76% and 77% for the cyclic alternating pattern and non-rapid eye movement sleep classification. The predicted sleep quality achieved a high agreement when considering either the cyclic alternating pattern rate, the arousal index, apnea-hypopnea index or the sleep efficiency as quantification for sleep quality. A moderate correlation was achieved with the Epworth sleepiness score and Pittsburgh sleep quality index. Total sleep time presented a higher variation on the correlation analysis. Significance: The developed method is capable of estimating the sleep quality and is characterized by a low intra-individual variability. It only requires a small number of sensors that can easily be self-assembled, and could possibly lead to new developments in sleep quality estimation by home monitoring devices.en_US
dc.languageengen_US
dc.relation.ispartofPhysiological Measurementen_US
dc.sourcePhysiological Measurement[ISSN 0967-3334],v. 40 (10)en_US
dc.subject6105 Evaluación y diagnóstico en psicologíaen_US
dc.subject.otherSleep qualityen_US
dc.subject.otherCAP rateen_US
dc.subject.otherSingle-lead ECGen_US
dc.titleSleep quality of subjects with and without sleep-disordered breathing based on the cyclic alternating pattern rate estimation from single-lead ECGen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1088/1361-6579/ab4f08
dc.identifier.scopus85074446008
dc.identifier.isi000495636400005-
dc.contributor.authorscopusid57211802910
dc.contributor.authorscopusid55489640900
dc.contributor.authorscopusid57200602527
dc.contributor.authorscopusid9634135600
dc.contributor.authorscopusid7005360676
dc.identifier.eissn1361-6579-
dc.identifier.issue10-
dc.relation.volume40-
dc.investigacionCiencias de la Saluden_US
dc.type2Artículoen_US
dc.contributor.daisngid6442981
dc.contributor.daisngid4069296
dc.contributor.daisngid1189663
dc.contributor.daisngid1986395
dc.contributor.daisngid31852370
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Mendonca, F
dc.contributor.wosstandardWOS:Mostafa, SS
dc.contributor.wosstandardWOS:Morgado-Dias, F
dc.contributor.wosstandardWOS:Ravelo-Garcia, AG
dc.contributor.wosstandardWOS:Penzel, T
dc.date.coverdateOctubre 2019
dc.identifier.ulpgces
dc.description.sjr0,702
dc.description.jcr2,309
dc.description.sjrqQ2
dc.description.jcrqQ3
dc.description.scieSCIE
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-8512-965X-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameRavelo García, Antonio Gabriel-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

6
checked on Mar 30, 2025

WEB OF SCIENCETM
Citations

6
checked on Mar 30, 2025

Page view(s)

66
checked on Dec 9, 2023

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.