Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/63295
Título: | Astrotourism and night sky brightness forecast: first probabilistic model approach | Autores/as: | Caballero-Sánchez, Eleazar Sánchez-Medina, Agustín J. Alonso-Hernández, Jesús B. Voltes-Dorta, Augusto |
Clasificación UNESCO: | 33 Ciencias tecnológicas 531290 Economía sectorial: turismo |
Palabras clave: | Sky quality metre Astrotourism Celestial tourism ARIMA Artificial neural network (ANN), et al. |
Fecha de publicación: | 2019 | Publicación seriada: | Sensors | Resumen: | Celestial tourism, also known as astrotourism, astronomical tourism or, less frequently, star tourism, refers to people's interest in visiting places where celestial phenomena can be clearly observed. Stars, skygazing, meteor showers or comets, among other phenomena, arouse people's interest, however, good night sky conditions are required to observe such phenomena. From an environmental point of view, several organisations have surfaced in defence of the protection of dark night skies against light pollution, while from an economic point of view; the idea also opens new possibilities for development in associated areas. The quality of dark skies for celestial tourism can be measured by night sky brightness (NSB), which is used to quantify the visual perception of the sky, including several light sources at a specific point on earth. The aim of this research is to model the nocturnal sky brightness by training and testing a probabilistic model using real NSB data. ARIMA and artificial neural network models have been applied to open NSB data provided by the Globe at Night international programme, with the results of this first model approach being promising and opening up new possibilities for astrotourism. To the best of the authors' knowledge, probabilistic models have not been applied to NSB forecasting. | URI: | http://hdl.handle.net/10553/63295 | ISSN: | 1424-8220 | DOI: | 10.3390/s19132840 | Fuente: | Sensors [ISSN 1424-8220], v. 19 (13), 2840 |
Colección: | Artículos |
Citas SCOPUSTM
12
actualizado el 10-nov-2024
Citas de WEB OF SCIENCETM
Citations
6
actualizado el 10-nov-2024
Visitas
199
actualizado el 09-nov-2024
Descargas
234
actualizado el 09-nov-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.